Instructors: Noah S. Seixas, Ph.D. 685-7189, nseixas@uw.edu
Lianne Sheppard, Ph.D. 616-2722, sheppard@uw.edu

Meetings: Class: Tuesday, 8:30 - 10:20 Genome Sciences S060
Laboratory: Thursday, 8:30-9:20 Health Sciences Library Classroom C
(extended labs as needed) (Scheduled for T498)

Class Website: https://canvas.uw.edu/courses/1099265

Office Hours: By arrangement

Course Goals: This course will introduce students to quantitative aspects of occupational/environmental exposure data analysis with the goal of better understanding the nature of exposures and their interpretation for human health. Issues in the analysis and interpretation of exposure data will be explored through reading and discussions of the primary literature on exposure assessment methods. Practice exposure data analysis will be conducted using "real" exposure datasets and statistical analysis software. Specific topics will include:
1. Purposes and use of exposure data
2. Exposure distributions and their description
3. Sampling strategies
4. Modeling of exposure
5. Statistical and biological basis of exposure metrics
6. Measurement error
7. Special topics

Learning Objectives: By the conclusion of this class, students should be able to:
1. Describe the primary purposes of exposure assessment.
2. Calculate and describe the meaning of measures of central tendency and distributional properties of normal and lognormal data.
3. Describe and design major exposure assessment strategies, citing the logistical and statistical strengths and weaknesses of each.
4. Develop, validate, interpret, and use multivariable linear models from existing exposure datasets to describe and predict exposures.
5. Effectively use random, fixed and mixed models for exposure determinants.
6. Identify importance of time-related factors in exposure distributions in predicting risk, including short-term peak exposures and the effects of biological dampening of variability.
7. Describe sources and effects of different types of measurement error.
8. Discern general lessons from and implications of primary research papers on exposure assessment methods, and use these lessons to design effective assessment strategies for future studies.
Disability Resources for Students (DRS) offers resources and coordinates reasonable accommodations for students with disabilities. Reasonable accommodations are established through an interactive process between you, your instructor(s) and DRS. If you have not yet established services through DRS, but have a temporary or permanent disability that requires accommodations (this can include but not limited to; mental health, attention-related, learning, vision, hearing, physical or health impacts), you are welcome to contact DRS at 206-543-8924 or uwdrs@uw.edu or disability.uw.edu

Academic Integrity
Students at the University of Washington (UW) are expected to maintain the highest standards of academic conduct, professional honesty, and personal integrity. The UW School of Public Health (SPH) is committed to upholding standards of academic integrity consistent with the academic and professional communities of which it is a part. Plagiarism, cheating, and other misconduct are serious violations of the University of Washington Student Conduct Code (WAC 478-120). We expect you to know and follow the university’s policies on cheating and plagiarism, and the SPH Academic Integrity Policy. Any suspected cases of academic misconduct will be handled according to University of Washington regulations. For more information, see the University of Washington Community Standards and Student Conduct website.

Course Requirements
1. Read and be prepared to discuss weekly readings in class. (It is possible that written reflections of these assignments will be required. Regardless, be prepared with comments.) Due Tuesdays in class.
2. Complete weekly data analysis assignments, presented as summarized results and interpretation. (This means data analyses are in the form of a presentation (e.g., tables/figures) of results accompanied by a brief written description and interpretation.) Due Wednesdays at 5pm.
3. Analyze a dataset to answer a set of specific questions and provide a written report including rationale, methods, results and discussion. Due finals week.

Grading
1. Class preparation/participation: 25%
2. Homework Assignments: 50%
3. Final paper: 25%

Software: Students are encouraged to use Stata, and some assignments may require Stata familiarity. Use of other statistical software packages is acceptable, but assistance will be limited. Those more comfortable with R are welcome to use it, and extra R-focused workshops will be scheduled as desired. All course-provided datasets will be backward compatible to Stata version 10.

Texts: Readings will be drawn primarily from the primary research literature. These and additional supplementary papers are posted on the class website.

The additional recommended texts listed below are on reserve in F225.
ENVH 556: Weekly Class Schedule (Subject to change)

WEEK 1

<table>
<thead>
<tr>
<th>Date</th>
<th>Hours</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Jan</td>
<td>2</td>
<td>Introduction and Basic Concepts (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class structure, general introduction to term project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to datasets: DEMS, snapshot, Welding School Exposures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exposure assessment for epidemiology, risk assessment, compliance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Descriptive statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variability and uncertainty (including formulas for bias, precision and uncertainty)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lognormal distribution and its parameters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exceedance probabilities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Hours</th>
<th>Lab: Stata, Data, and Distributions (LS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Jan</td>
<td>1</td>
<td>Introduction to Stata, syntax, do files, logging results, exploring data, basic data analysis using the DEMS data, principles of reproducible research</td>
</tr>
</tbody>
</table>

WEEK 2

<table>
<thead>
<tr>
<th>Date</th>
<th>Hours</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-Jan</td>
<td>2</td>
<td>Exposure Assessment Strategies (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Survey design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exposure Metrics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Individual, task and group assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concept of HEGs/SEGs – history and use in compliance monitoring and surveillance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variance components concepts</td>
</tr>
</tbody>
</table>

Supplemental Reading: Kromhout, H. Design of measurement strategies for workplace exposures. |

Lab Due: Intro to Stata and data exploration

<table>
<thead>
<tr>
<th>Date</th>
<th>Hours</th>
<th>Lab: Presentation and precision of distribution parameters (NS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-Jan</td>
<td>1</td>
<td>Exceedance fractions, sample size and compliance exercise using the DEMS data. Includes assessing distributions, calculation of lognormal (LN) parameters, exceedance. Data presentation principles.</td>
</tr>
</tbody>
</table>
WEEK 3

17-Jan 2 Hours **Regression Models and Regression for Association (LS)**
Linear regression introduction Estimation vs. prediction goals
Dummy Variables Co-factors, Confounding, Interaction
Mean and variance models concepts
Model selection for association models

Readings Due:
DEMS IV – Vermeulen et al 2012
Friesen MC, Davies HK, Teschke K, Marion S, Demers PA. Predicting historical dust and wood dust exposure in sawmills: Model development and validation. *JOEH*, 2005, 2:650-8

Optional reading:
Allen et al (for lab prep)

Lab Due:
Distributions

19-Jan 1 Hour **Lab: Fitting and Interpreting Regression Models (LS)**
Regression model practice using the Infiltration data

WEEK 4

24-Jan 2 Hours **Prediction Modeling and Validation (LS)**
Regression for prediction
Model selection for prediction
Validating regression models: In sample vs. out of sample validation, cross validation
Bias-variance tradeoff

Readings Due:
DEMS V – Stewart et al 2012

Lab Due:
Regression models

26-Jan 1 Hours **Lab: Prediction Modeling and Validation (LS)**
Bias-variance tradeoff and cross-validation exercise using the Snapshot data
WEEK 5

31-Jan 2 Hours Variance Components and Mixed Models (LS)
Variance components estimation
Integration of variance components and regression: Mixed models

Optional reading: Kromhout H, Symanski E, Rappaport SM. A comprehensive evaluation of within-
and between-worker components of occupational exposure to chemical agents.
Ann Occ Hyg, 1993, 37: 253-270

Lab Due: Cross-validation

2-Feb 1 Hour Lab: Variance Components from Mixed Models (LS)
Fit a mixed model, adjusting variable included in random and fixed terms and provide contrasting
interpretations. Describe fixed and random effects in Welding School data.

WEEK 6

7-Feb 2 Hours Review and DEMS Papers Discussion (NS)
Discussion on papers and material read up to this point
Introduction of Term Paper Assignment and Discussion of Approach

Readings Revisit DEMS IV – Vermeulen et al 2012
Borak 2011 Comment and Stewart’s reply

Supplemental Reading: Read DEMS III – Vermeulen et al 2010
Revisit DEMS II – Coble
Revisit DEMS V – Stewart et al 2012
exposure assessment used in epidemiological studies of diesel exhaust and lung

Lab Due: Variance components

9-Feb 1 Hour Begin Term Project Lab Assignment (LS)
Explore and select models for prediction using personal REC data
Explore and describe CO historical data and covariates
WEEK 7
14-Feb 2 Hours Measurement Error in Epidemiology (LS)
Misclassification
Regression measurement error Classical and Berkson error models Consequences and exceptions

Lab Due: None

16-Feb 1 Hours Lab: Measurement Error Exercise (LS)
Measurement error exercise using simulation

WEEK 8
21-Feb 2 Hours Special Topic: Air Pollutantion Exposure Modeling (LS)
Land Use Regression (LUR) with extension to geostatistical smoothing. Kriging and variograms.

Lab Due: Measurement Error

23-Feb 1 Hour Lab: Geostatistics and Universal Kriging (LS)
Geostatistics: Kriging and Variograms using the Snapshot data
WEEK 9

28-Feb 2 Hours Meta-analysis (NS/LS)

Lab Due: Geostatistics and Variograms

2-Mar 1 Hours Lab: Meta-analysis Lab

Details to be added

WEEK 10

7-Mar 2 Hours Bayesian Decision Analysis (NS)

Bayes Theorem
Subjective/Expert estimation
Combining data sources
Bayesian estimation and decision making

Lab Due: Meta-analysis

9-Mar 1 Hours Lab: Problem-solving for term project (NS)

Review and problem-solving for term project

EXAM WEEK

16-Mar
Term project due