ENVH 556 Syllabus OCCUPATIONAL EXPOSURE ANALYSIS Winter Quarter, 2017 3 Credits

Instructors:	Noah S. Seixas, Ph.D. Lianne Sheppard, Ph.D.	685-7189, nseixas@uw.edu 616-2722, sheppard@uw.edu
Meetings:	Class: Tuesday, 8:30 - 10:20 Laboratory: Thursday, 8:30-9:20 (extended labs as needed)	Genome Sciences S060 Health Sciences Library Classroom C (Scheduled for T498)

Class Website: https://canvas.uw.edu/courses/1099265

Office Hours: By arrangement

Course Goals: This course will introduce students to quantitative aspects of occupational/environmental exposure data analysis with the goal of better understanding the nature of exposures and their interpretation for human health. Issues in the analysis and interpretation of exposure data will be explored through reading and discussions of the primary literature on exposure assessment methods. Practice exposure data analysis will be conducted using "real" exposure datasets and statistical analysis software. Specific topics will include:

- 1. Purposes and use of exposure data
- 2. Exposure distributions and their description
- 3. Sampling strategies
- 4. Modeling of exposure
- 5. Statistical and biological basis of exposure metrics
- 6. Measurementerror
- 7. Special topics

Learning Objectives: By the conclusion of this class, students should be able to:

- 1. Describe the primary purposes of exposure assessment.
- 2. Calculate and describe the meaning of measures of central tendency and distributional properties of normal and lognormal data.
- 3. Describe and design major exposure assessment strategies, citing the logistical and statistical strengths and weaknesses of each.
- 4. Develop, validate, interpret, and use multivariable linear models from existing exposure datasets to describe and predict exposures.
- 5. Effectively use random, fixed and mixed models for exposure determinants.
- 6. Identify importance of time-related factors in exposure distributions in predicting risk, including short-term peak exposures and the effects of biological dampening of variability.
- 7. Describe sources and effects of different types of measurement error.
- 8. Discern general lessons from and implications of primary research papers on exposure assessment methods, and use these lessons to design effective assessment strategies for future studies.

Disability Resources for Students (DRS) offers resources and coordinates reasonable accommodations for students with disabilities. Reasonable accommodations are established through an interactive process between you, your instructor(s) and DRS. If you have not yet established services through DRS, but have a temporary or permanent disability that requires accommodations (this can include but not limited to; mental health, attention-related, learning, vision, hearing, physical or health impacts), you are welcome to contact DRS at 206-543-8924 or <u>uwdrs@uw.edu</u> or disability.uw.edu

Academic Integrity

Students at the University of Washington (UW) are expected to maintain the highest standards of academic conduct, professional honesty, and personal integrity. The UW School of Public Health (SPH) is committed to upholding standards of academic integrity consistent with the academic and professional communities of which it is a part. Plagiarism, cheating, and other misconduct are serious violations of the University of Washington Student Conduct Code (WAC 478-120). We expect you to know and follow the university's policies on cheating and plagiarism, and the SPH Academic Integrity Policy. Any suspected cases of academic misconduct will be handled according to University of Washington regulations. For more information, see the University of Washington Community Standards and Student Conduct website.

Course Requirements

- 1. Read and be prepared to discuss weekly readings in class. (It is possible that written reflections of these assignments will be required. Regardless, be prepared with comments.) Due Tuesdays in class.
- Complete weekly data analysis assignments, presented as summarized results and interpretation. (This means data analyses are in the form of a presentation (e.g., tables/figures) of results accompanied by a brief written description and interpretation.) Due Wednesdays at 5pm.
- 3. Analyze a dataset to answer a set of specific questions and provide a written report including rationale, methods, results and discussion. Due finals week.

Grading

1. Class preparation/participation: 2	25%
---------------------------------------	-----

- 2. Homework Assignments: 50%
- 3. Final paper: 25%

Software: Students are encouraged to use Stata, and some assignments may require Stata familiarity. Use of other statistical software packages is acceptable, but assistance will be limited. Those more comfortable with R are welcome to use it, and extra R-focused workshops will be scheduled as desired. All course-provided datasets will be backward compatible to Stata version 10.

Texts: Readings will be drawn primarily from the primary research literature. These and additional supplementary papers are posted on the class website.

The additional recommended texts listed below are on reserve in F225.

- Ramachandran G. *Occupational Exposure Assessment for Air Contaminants*. Taylor and Francis Group, CRC Press. 2005.
- Rappaport SM, Kupper LL. *Quantitative Exposure Assessment*. S. Rappaport, El Cerrito, CA, 2008. Available at www.lulu.com (ID: 1341905).
- Smith TJ, Kriebel D. A biologic approach to environmental assessment and epidemiology. Oxford University Press, 2010.
- Nieuwenhuijsen MJ, ed. *Exposure assessment in occupational and environmental epidemiology*. Oxford University Press, 2003.

ENVH 556: Weekly Class Schedule (Subject to change)

WEEK 1

3-Jan	2 Hours	Introduction and Basic Concepts (NS)
Class structure,	general	introduction to term project
Introduction to	datasets	: DEMS, snapshot, Welding School Exposures
Exposure assess	sment fo	r epidemiology, risk assessment, compliance
Descriptive stat	istics	
Variability and u	uncertair	ity (including formulas for bias, precision and uncertainty)
Lognormal dist	ribution	and its parameters
Exceedancepro	babilitie	5
Readings Due:		Rappaport SM. The Rules of the Game. <i>AJIM</i> 6:291-303, 1984. (read in advance)
<u>5-Jan</u>	1 Hour	Lab: Stata, Data, and Distributions (LS)
Introduction to	Stata, sy	ntax, do files, logging results, exploring data, basic data analysis using the DEMS
data, principles	of repro	ducible research

WEEK 2

10-Jan 2 Hou	rs Exposure Assessment Strategies (NS)
Survey design	
Sample size	
Exposure Metrics	
Individual, task and gro	oup assessment
Concept of HEGs/SEGs	 history and use in compliance monitoring and surveillance
Variance components of	concepts
Readings Due:	DEMS II– Coble et al. Exposure Monitoring Surveys and Development of Exposure
	Groups. AOH 54:747, 2010.
	Virgi MA, Woskie SR, Water M, et al. Agreement between task-based estimates
	of the full-shift noise exposure and the full-shift noise dosimetry. Ann Occup Hyg
	53:201-214. 2009.
Supplemental Reading	: Kromhout, H. Design of measurement strategies for workplace exposures.
	Occup Environ Med 2002;59:349-354.
Lab Due:	Intro to Stata and data exploration

12-Jan1 HourLab: Presentation and precision of distribution parameters (NS)Exceedance fractions, sample size and compliance exercise using the DEMS data. Includes assessing
distributions, calculation of lognormal (LN) parameters, exceedance. Data presentation principles.

WEEK 3

17-Jan	2 Hours Regression Models and Regression for Association (LS)	
Linear regression introduction Estimation vs. prediction goals		
Dummy Variab	s Co-factors, Confounding, Interaction	
Mean and varia	ce models concepts	
Model selection	for association models	
Readings Due:	DEMS IV – Vermeulen et al 2012	
	Friesen MC, Davies HK, Teschke K, Marion S, Demers PA. Predicting historical d	lust
	and wood dust exposure in sawmills: Model development and validation. JOE	Н,
	2005, 2:650-8	
Optional readir	: Burstyn and Teschke 1999. Studying the Determinants of Exposure: A Review	w of
	Methods. AIHA Journal, 1999, 60: 57-72	
	Allen et al (for lab prep)	
Lab Due:	Distributions	

19-Jan1 HourLab: Fitting and Interpreting Regression Models (LS)Regression model practice using the Infiltration data

WEEK 4

24-Jan	2 Hours	Prediction Modeling and Validation (LS)
Regression fo	r prediction	
Model selecti	on for prediction	า
Validating reg	ression models	In sample vs. out of sample validation, cross validation
Bias-variance	tradeoff	
<u>Readings Due</u>	conc Athe 4412	cer, 2011. Comparing universal kriging and land-use regression for predicting entrations of gaseous oxides of nitrogen (NOx) for the Multi-Ethnic Study of rosclerosis and Air Pollution (MESA Air). <i>Atmospheric Environment</i> 45 (2011) 2-4420. S V – Stewart et al 2012

Lab Due: Regression models

26-Jan1 HoursLab: Prediction Modeling and Validation (LS)Bias-variance tradeoff and cross-validation exercise using the Snapshot data

WEEK 5

31-Jan 2 Ho	urs Variance Components and Mixed Models (LS)	
Variance components estimation		
Integration of variand	e components and regression: Mixed models	
Readings Due:	Peretz, C, et al. Application of a mixed effects model for exposure assessment. Ann Occup Hyg, 2002.	
Optional reading:	Kromhout H, Symanski E, Rappaport SM. A comprehensive evaluation of within- and between-worker components of occupational exposure to chemical agents. <i>Ann Occ Hyg</i> , 1993, 37: 253-270	
Lab Due:	Cross-validation	
<u>2-Feb 1 Ho</u>	ur Lab: Variance Components from Mixed Models (LS)	
Fit a mixed model, ad	usting variable included in random and fixed terms and provide contrasting	
interpretations. Desc	ribe fixed and random effects in Welding School data.	

WEEK 6

7-Feb 2 Hou	rs Review and DEMS Papers Discussion (NS)
Discussion on papers a	nd material read up to this point
Introduction of Term P	aper Assignment and Discussion of Approach
<u>Readings</u>	Revisit DEMS IV – Vermeulen et al 2012
	Borak 2011 Comment and Stewart's reply
Supplemental Reading	: Read DEMS III – Vermeulen et al 2010
	Revisit DEMS II – Coble
	Revisit DEMS V – Stewart et al 2012
	More optional: Read: Crump K & van Landingham C, 2012. Evaluation of an
	exposure assessment used in epidemiological studies of diesel exhaust and lung
	cancer in underground mines. <i>Critical Reviews in Toxicology</i> , 2012; 42(7): 599–612.
Lab Due:	Variance components
9-Feb 1 Hou	r Begin Term Project Lab Assignment (LS)
Explore and select mod	dels for prediction using personal REC data
Explore and describe C	O historical data and covariates

WEEK 7

14-Feb	2 Hours	Measurement Error in Epidemiology (LS)
Misclassificatio	n	
Regression me	asurement error	Classical and Berkson error models Consequences and exceptions
<u>Readings Due:</u>	neces Heede occup	AA, Paciorek C, Sheppard L. Does more accurate exposure prediction sarily improve health effect estimates? <i>Epidemiology</i> , 2011, 22:680-685. erik D, Attfield M. Characterization of dust exposure for the study of chronic ational lung disease: A comparison of different exposure assessment gies. <i>AJE</i> , 2000, 151: 982-90
Lab Due:	None	
16-Feb Measurement	1 Hours error exercise us	Lab: Measurement Error Exercise (LS) sing simulation

WEEK 8

21-Feb	2 Hours	Special Topic: Air Pollutantion Exposure Modeling (LS)
Land Use Regre	ession (LUR) \	with extension to geostatistical smoothing. Kriging and variograms.
<u>Readings Due:</u>	Or nit of 20 Ho of	read: Mercer LD, Szpiro AA, Sheppard L, Lindström J, Adar SD, Allen RD, Avol EL, on AP, Larson T, Liu LJS, Kaufman JD. Predicting concentrations of oxides of crogen (NOx) in Los Angeles, CA using universal kriging for the Multi-Ethnic Study Atherosclerosis and Air Pollution (MESA Air), <i>Atmospheric Environment</i> , 11,45:4412-4420. bek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs B. A review land-use regression models to assess spatial variation of outdoor air pollution, <i>mospheric Environment</i> , 2008, 42: 7561-7578.
Lab Due:	Me	easurement Error
<u>23-Feb</u>	1 Hour	Lab: Geostatistics and Universal Kriging (LS)

Geostatistics: Kriging and Variograms using the Snapshot data

WEEK 9		
28-Feb	2 Hours	s Meta-analysis (NS/LS)
<u>Readings Due:</u>		Lenters V, Vermeulen R, Dogger S, et al. A meta-analysis of asbestos and lung cancer: Is better quality exposure assessment associated with steeper slopes of the exposure response relationships? <i>Environ Health Perspect</i> 119:1547–1555 (2011). http://dx.doi.org/10.1289/ehp.1002879.
Supplemental re	eadings:	Berman DW. Case BW. Overreliance on a single study: There is no real evidence that applying quality criteria to exposure in asbestos epidemiology affects the estimated risk. <i>Ann Occup Hyg.</i> 56: 869-878 (2012).
Lab Due:		Geostatistics and Variograms
<u>2-Mar</u>	<u>1 Hours</u>	s Lab: Meta-analysis Lab

Details to be added

WEEK 10

<u>7-Mar 2 I</u>	lours Bayesian Decision Analysis (NS)
Bayes Theorem	
Subjective/Experte	stimation
Combining data so	urces
Bayesian estimatio	n and decision making
Readings Due:	Ramachandran. Retrospective Exposure Assessment using Bayesian Methods.
<u>u</u>	AOH, 2001.
	Banerjee, et al. Bayesian hierarchical framework for occupational hygiene decision making. <i>AOH</i> , 2014.
Lab Due:	Meta-analysis

9-Mar1 HoursLab: Problem-solving for term project (NS)Review and problem-solving for term project

EXAM WEEK

<u>**16-Mar**</u> Term project due