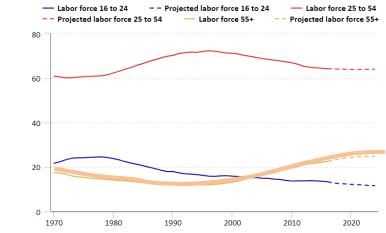


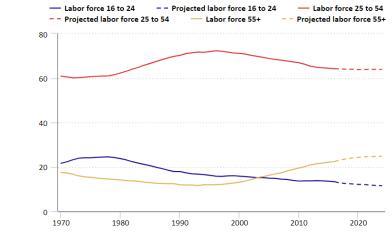
# Effects of Working Memory and Muscle Fatigue on Dynamic Gait Balance Control in Older Worker


#### Szu-Hua (Teresa) Chen, MS, PT Li-Shan Chou, Ph.D.

Department of Human Physiology szuhuac@uoregon.edu



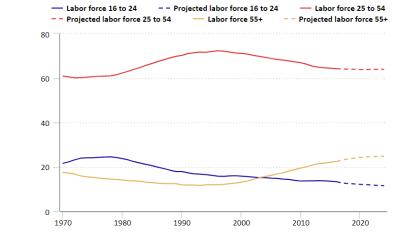
11/16/2017


- The percent of older Americans in the labor force has been increasing. <sup>1</sup>
  - employment-to-population ratios for workers age 55+ in the state of Montana, Wyoming, Idaho, Oregon and Washington are 41.5%, 45.5%, 37.6 &, 38.1 % and 28.7%, respectively



- For workers age 55 and older, the incident rate for fall was much higher than all other age groups.<sup>1</sup>
- Older workers who suffer a workplace injury may experience as twice as long recovery periods than their younger counterparts. <sup>2</sup>

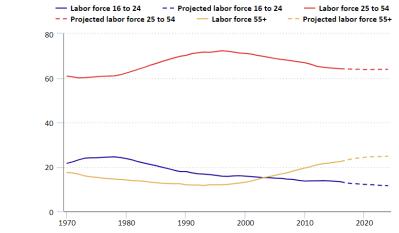



- The percent of older Americans in the labor force has been increasing.<sup>1</sup>
  - employment-to-population ratios for workers age 55+ in the state of Montana, Wyoming, Idaho, Oregon and Washington are 41.5%, 45.5%, 37.6 &, 38.1 % and 28.7%, respectively



- For workers age 55 and older, the incident rate for fall was much higher than all other age groups.<sup>1</sup>
- Older workers who suffer a workplace injury may experience as twice as long recovery periods than their younger counterparts. <sup>2</sup>




- The percent of older Americans in the labor force has been increasing.<sup>1</sup>
  - employment-to-population ratios for workers age 55+ in the state of Montana, Wyoming, Idaho, Oregon and Washington are 41.5%, 45.5%, 37.6 &, 38.1 % and 28.7%, respectively



- For workers age 55 and older, the incident rate for fall was much higher than all other age groups.<sup>1</sup>
- Older workers who suffer a workplace injury may experience as twice as long recovery periods than their younger counterparts. <sup>2</sup>



- The percent of older Americans in the labor force has been increasing.<sup>1</sup>
  - employment-to-population ratios for workers age 55+ in the state of Montana, Wyoming, Idaho, Oregon and Washington are 41.5%, 45.5%, 37.6 &, 38.1 % and 28.7%, respectively



- For workers age 55 and older, the incident rate for fall was much higher than all other age groups.<sup>1</sup>
- Older workers who suffer a workplace injury may experience as twice as long recovery periods than their younger counterparts.<sup>2</sup>



- Muscle fatigue
  - is a symptom often found among older population
  - has been found to cause motor adjustments in daily activities
  - has been linked to falls.<sup>1</sup>
- Work requires both physical and cognitive demands, such as working memory. <sup>2,3</sup>
- Working memory
  - a mental process that stores information in a temporarily accessible state and manipulates the information when necessary
  - deficits in working memory compromise their ability to perform job-related tasks and daily activities efficiently and accurately



- Muscle fatigue
  - is a symptom often found among older population
  - has been found to cause motor adjustments in daily activities
  - has been linked to falls.<sup>1</sup>
- Work requires both physical and cognitive demands, such as working memory. <sup>2,3</sup>
- Working memory
  - a mental process that stores information in a temporarily accessible state and manipulates the information when necessary
  - deficits in working memory compromise their ability to perform job-related tasks and daily activities efficiently and accurately

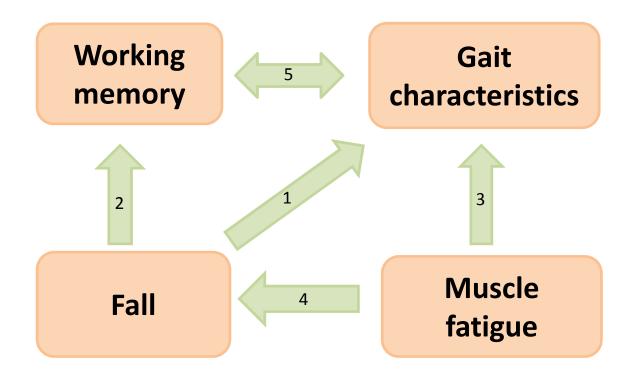


- Muscle fatigue
  - is a symptom often found among older population
  - has been found to cause motor adjustments in daily activities
  - has been linked to falls.<sup>1</sup>
- Work requires both physical and cognitive demands, such as working memory. <sup>2,3</sup>
- Working memory
  - a mental process that stores information in a temporarily accessible state and manipulates the information when necessary
  - deficits in working memory compromise their ability to perform job-related tasks and daily activities efficiently and accurately

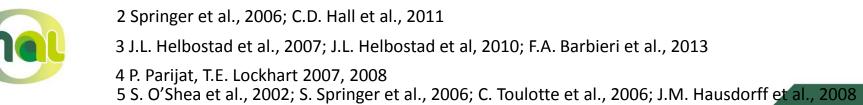


- Muscle fatigue
  - is a symptom often found among older population
  - has been found to cause motor adjustments in daily activities
  - has been linked to falls.<sup>1</sup>
- Work requires both physical and cognitive demands, such as working memory. <sup>2,3</sup>
- Working memory
  - a mental process that stores information in a temporarily accessible state and manipulates the information when necessary
  - deficits in working memory compromise their ability to perform job-related tasks and daily activities efficiently and accurately



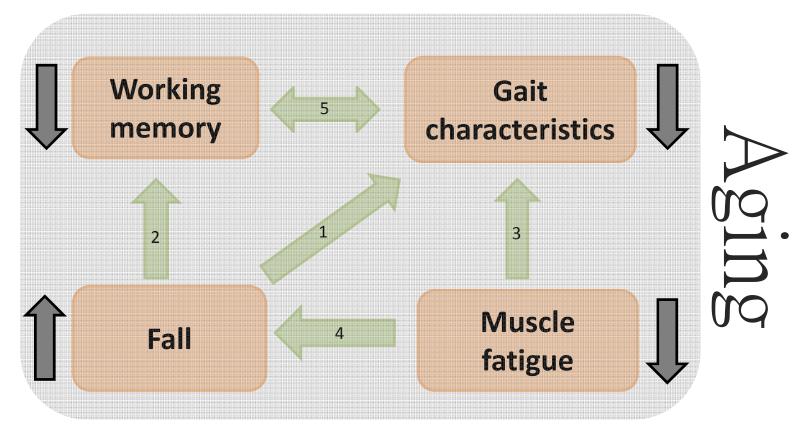

- Muscle fatigue
  - is a symptom often found among older population
  - has been found to cause motor adjustments in daily activities
  - has been linked to falls.<sup>1</sup>
- Work requires both physical and cognitive demands, such as working memory. <sup>2,3</sup>
- Working memory
  - a mental process that stores information in a temporarily accessible state and manipulates the information when necessary
  - deficits in working memory compromise their ability to perform job-related tasks and daily activities efficiently and accurately



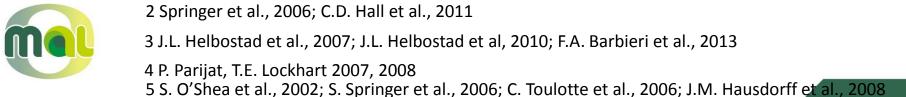

- Muscle fatigue
  - is a symptom often found among older population
  - has been found to cause motor adjustments in daily activities
  - has been linked to falls.<sup>1</sup>
- Work requires both physical and cognitive demands, such as working memory. <sup>2,3</sup>
- Working memory
  - a mental process that stores information in a temporarily accessible state and manipulates the information when necessary
  - deficits in working memory compromise their ability to perform job-related tasks and daily activities efficiently and accurately



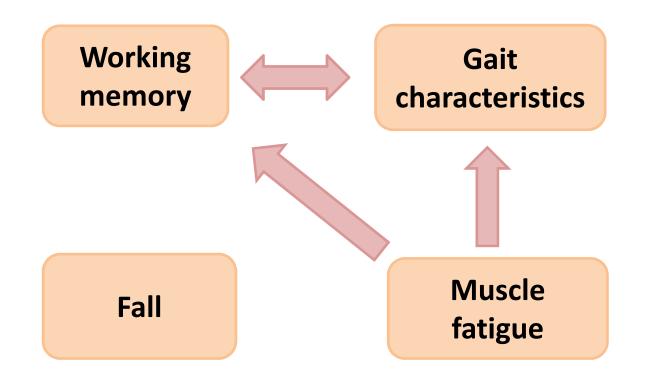
#### What we have learned from literature




1 J.L. Helbostad et al., 2007; R.W. Kressig et al., 2008 C.J. Lamoth et al., 2011




12


#### Additionally...



1 J.L. Helbostad et al., 2007; R.W. Kressig et al., 2008 C.J. Lamoth et al., 2011



#### **Knowledge Gap**





### **Study Purpose**

- To examine changes in gait balance and working memory performance using dual-task paradigm in older workers compared to young controls after lower extremity muscle fatigue
  - What are the relative contributions of the following mechanisms in response to muscle fatigue in older workers: (1) reduced working memory capacity; (2) balance deficits after muscle fatigue or (3) inability to adequately allocate attentional resources to balance control?
  - What are the differential effects of age on gait balance control during dual-task performance with working memory engaged in fatigued subjects?



### **Study Purpose**

- To examine changes in gait balance and working memory performance using dual-task paradigm in older workers compared to young controls after lower extremity muscle fatigue
  - What are the relative contributions of the following mechanisms in response to muscle fatigue in older workers: (1) reduced working memory capacity; (2) balance deficits after muscle fatigue or (3) inability to adequately allocate attentional resources to balance control?
  - What are the differential effects of age on gait balance control during dual-task performance with working memory engaged in fatigued subjects?



### **Study Purpose**

- To examine changes in gait balance and working memory performance using dual-task paradigm in older workers compared to young controls after lower extremity muscle fatigue
  - What are the relative contributions of the following mechanisms in response to muscle fatigue in older workers: (1) reduced working memory capacity; (2) balance deficits after muscle fatigue or (3) inability to adequately allocate attentional resources to balance control?
  - What are the differential effects of age on gait balance control during dual-task performance with working memory engaged in fatigued subjects?



#### **Participants**

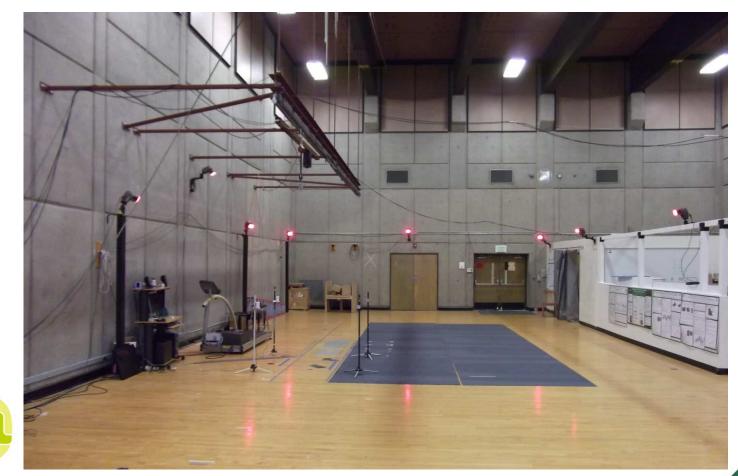
- Inclusion criteria
  - ages of 18-40 or 55-70 years old
  - involved in occupational activities with moderate-to-heavy physical demands \*
  - able to walk over ground and cross over an obstacle without an assistive device
  - normal hearing
- Exclusion criteria
  - a history of neurological disease or head trauma
  - impairments involving bones, muscles, or joints in the past six months
  - persistent symptoms of dizziness, lightheadedness, unsteadiness, or any other medical condition that may affect walking ability or ability to step over an obstacle
  - any extreme strenuous activity in the past 24 hours before the test



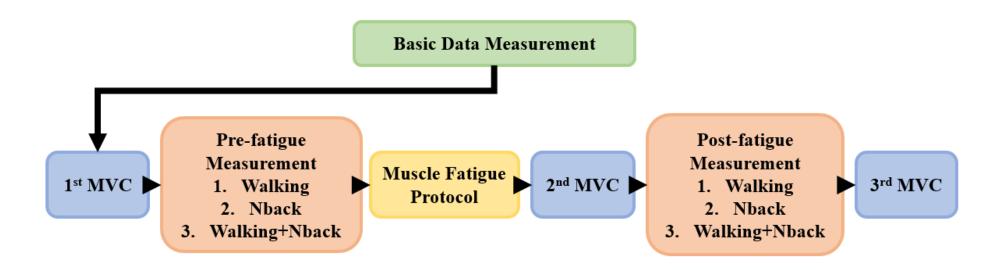
#### **Participants**

- Inclusion criteria
  - ages of 18-40 or 55-70 years old
  - involved in occupational activities with moderate-to-heavy physical demands \*
  - able to walk over ground and cross over an obstacle without an assistive device
  - normal hearing
- Exclusion criteria
  - a history of neurological disease or head trauma
  - impairments involving bones, muscles, or joints in the past six months
  - persistent symptoms of dizziness, lightheadedness, unsteadiness, or any other medical condition that may affect walking ability or ability to step over an obstacle
  - any extreme strenuous activity in the past 24 hours before the test

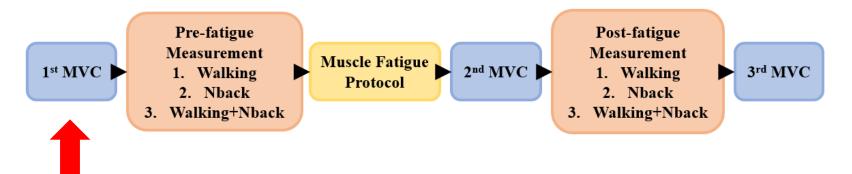



### **Participants**

|             | Young adult (N = 22; F = 11) | Older adult (N = 5; F = 4) |
|-------------|------------------------------|----------------------------|
| Age (ys)    | 20.7 ± 1.3                   | 59.6 ± 4.0 (55-65)         |
| Height (cm) | 171.6 ± 6.6                  | 159.5 ± 12.5               |
| Weight (kg) | 69.3 ± 9.0                   | 59.2 ± 14.7                |



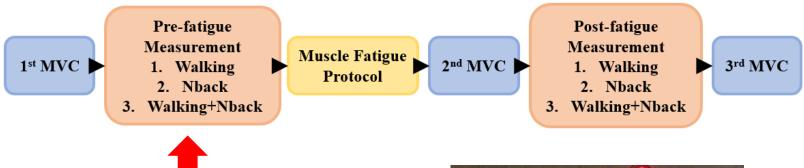

#### **Motion Analysis Lab**


• 12-camera motion analysis system (Motion Analysis Corp)

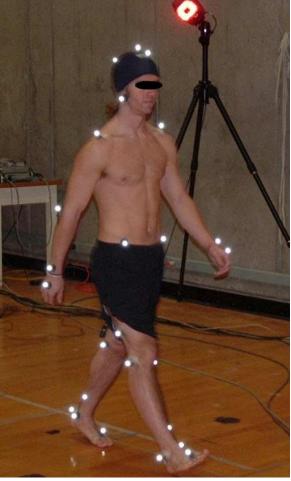


#### **Study Protocol**





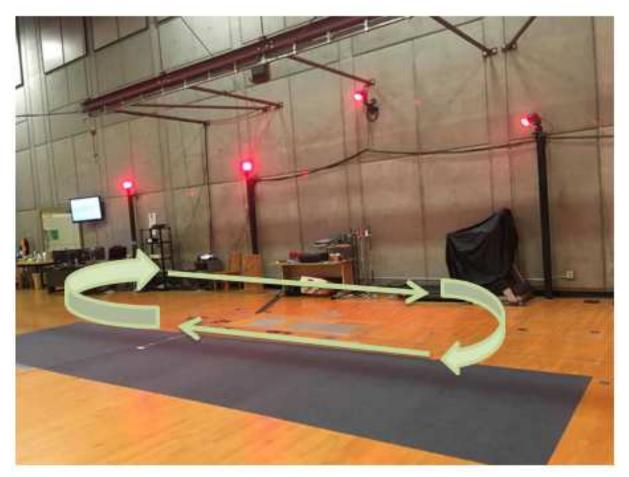




- MVC-maximal voluntary contraction
- Isometric dynamometer of right leg



- MVC of knee extension for 5 seconds
- Total of 3 Sets in one sitting with 1 minute in between
- Recorded highest value




• 29 reflective markers placed on bony landmarks





#### Walking

• 2 min at self-selected speed

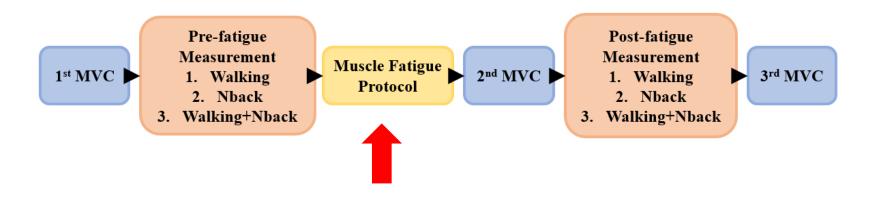




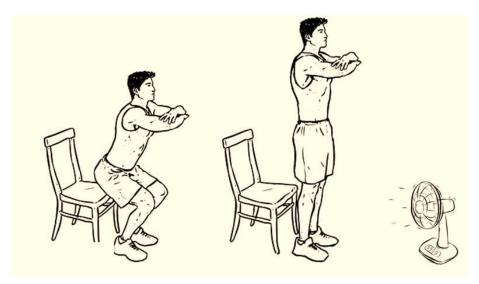
#### **N-back test**

- 2 minutes
- N = 3 digits

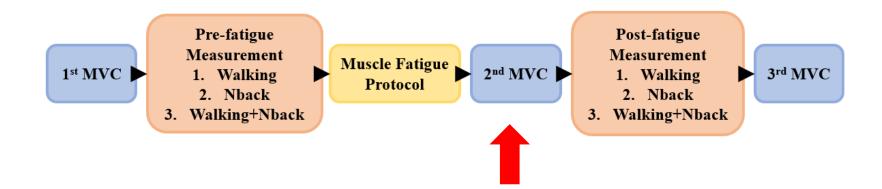





#### **Dual task: Walking + N-back**

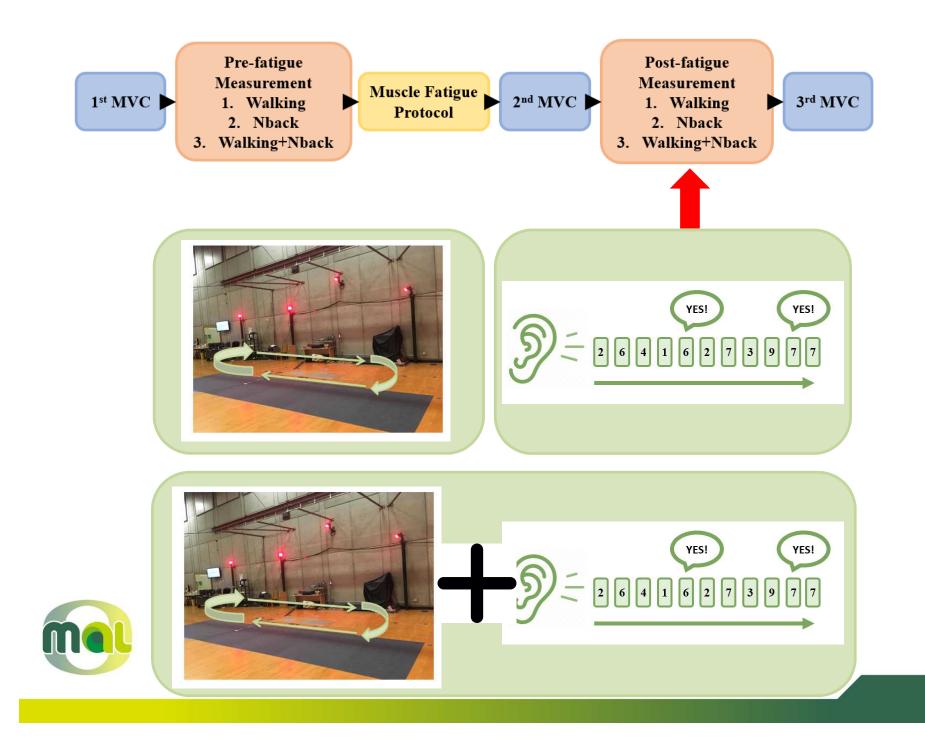


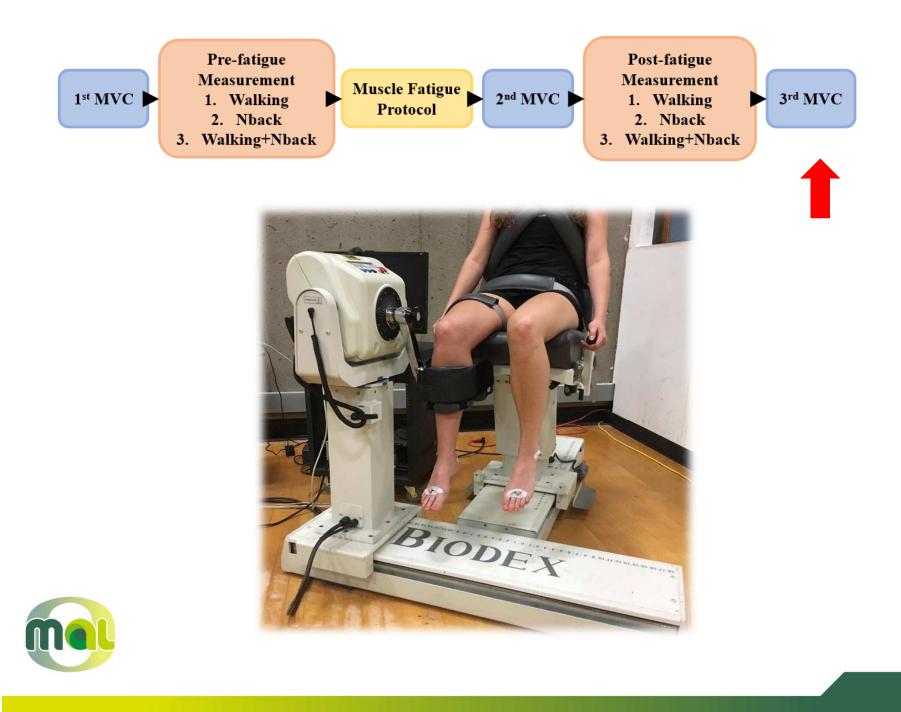





- Repeated sit-to-stand task at pace of 1 Hz or below until
  - Exhausted
  - Unable to keep up the beep
  - 30 minutes

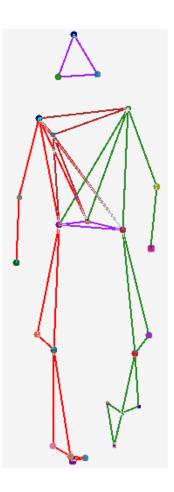




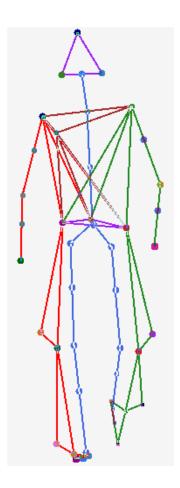




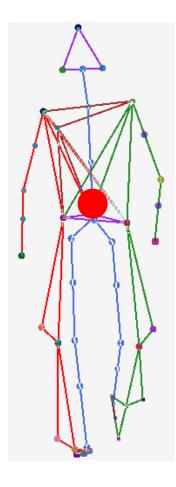



• Mediolateral displacement of center of mass (M-L CoM)



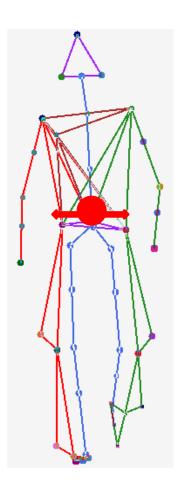

- Mediolateral displacement of center of mass (M-L CoM)
  - Marker trajectory data






- Mediolateral displacement of center of mass (M-L CoM)
  - Marker trajectory data
  - CoMs of 13 segments






- Mediolateral displacement of center of mass (M-L CoM)
  - Marker trajectory data
  - CoMs of 13 segments
  - Whole body CoM = weighted sum of 13 CoMs





- Mediolateral displacement of center of mass (M-L CoM)
  - Marker trajectory data
  - CoMs of 13 segments
  - Whole body CoM = weighted sum of 13 CoMs
  - Mediolateral sway during a gait cycle





# Variable 2: working memory

- Accuracy of N-back test (%)
  - 1-(number of missed digits/number of total digits)\*100



#### **Statistical Analysis**

- Young controls
  - 2X2 ANOVA with repeated measures using condition and fatigue
    - Condition: single- task vs dual-task
    - Fatigue: pre-fatigue vs post-fatigue
  - $\alpha = 0.05$
- Older adults
  - Descriptive analysis



### **Statistical Analysis**

- Young controls
  - 2X2 ANOVA with repeated measures using condition and fatigue
    - Condition: single- task vs dual-task
    - Fatigue: pre-fatigue vs post-fatigue
  - $\alpha = 0.05$
- Older adults
  - Descriptive analysis



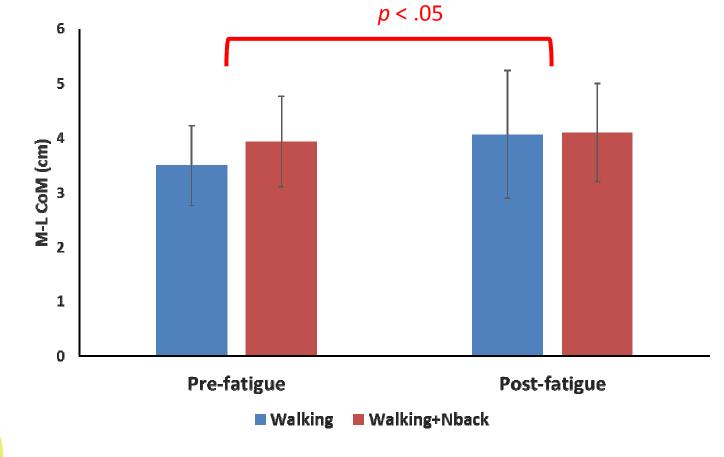
## **Results: degree of fatigue**

|                                   | Young adult (N = 22;<br>F = 11) | Older adult (N = 5;<br>F = 4) |
|-----------------------------------|---------------------------------|-------------------------------|
| Time to fatigue (min)             | 24.5                            | 23.8                          |
| strength drop (%)                 | 23.8                            | 16.6                          |
| strength drop after testing (%)   | 13.1                            | 9.8                           |
| Hz during sit to stand            | 1                               | 0.84                          |
| Rate of perceived exertion (6-20) | 14.4                            | 13.0                          |



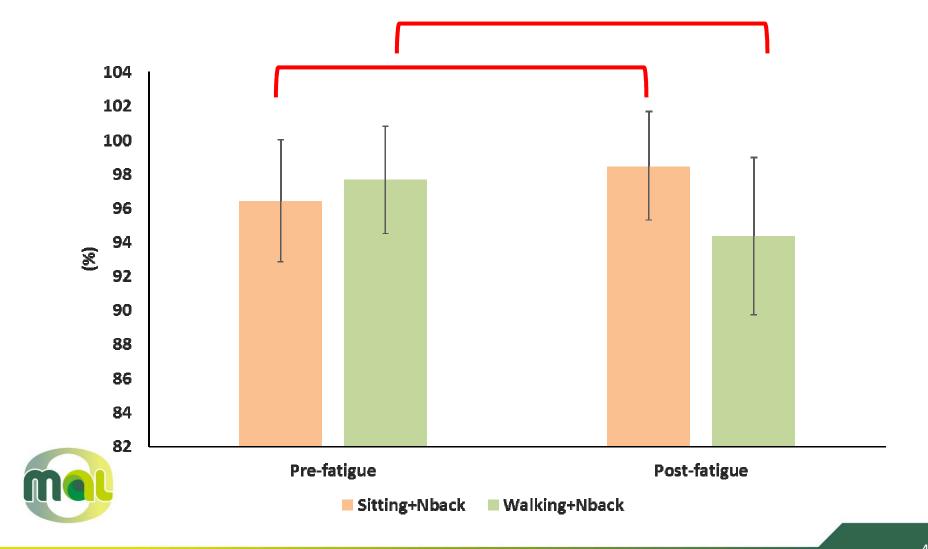
#### **Results: Young**

|                                  |        | Pre-fatigue     | Post-fatigue    |
|----------------------------------|--------|-----------------|-----------------|
| Gait velocity (m) <sup>a,b</sup> | Single | $1.21 \pm 0.12$ | $1.22 \pm 0.13$ |
|                                  | Dual   | $1.14 \pm 0.13$ | $1.19 \pm 0.11$ |
| Stride length (m) <sup>a,b</sup> | Single | $1.21 \pm 0.12$ | 1.23 ± 0.13     |
|                                  | Dual   | $1.14 \pm 0.13$ | $1.19 \pm 0.11$ |
| Step width (cm) <sup>a</sup>     | Single | 7.67 ± 2.11     | 8.41 ± 2.23     |
|                                  | Dual   | 7.78 ± 2.45     | 9.01 ± 2.35     |


a. fatigue main effect; b. condition main effect; c. interaction effect



| M-L CoM (cm) <sup>a</sup>       | Single | 3.50 ± 0.73  | 4.07 ± 1.17     |
|---------------------------------|--------|--------------|-----------------|
|                                 | Dual   | 3.94 ± 0.83  | $4.10 \pm 0.90$ |
| Working memory (%) <sup>c</sup> | Single | 96.43 ± 3.59 | 98.48 ± 3.22    |
|                                 | Dual   | 97.67 ± 3.17 | 94.34 ± 4.64    |




#### **Results: gait balance control (Y)**



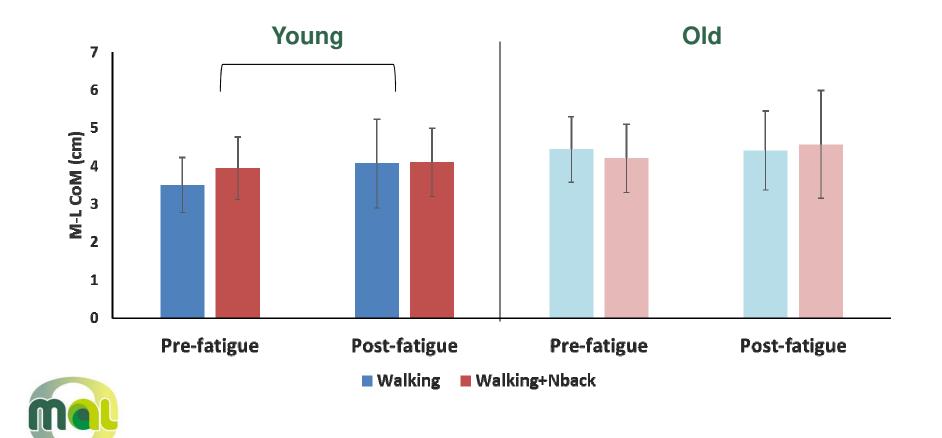


#### **Results: working memory performance (Y)**



#### **Results: Older**

# Do older adults have similar response to muscle fatigue?


|                    |        | Pre fatigue     | Post fatigue    |
|--------------------|--------|-----------------|-----------------|
| M-L CoM (cm)       | Single | 4.44 ± 0.87     | $4.41 \pm 1.05$ |
| 仓                  | Dual   | $4.20 \pm 0.90$ | 4.57 ± 1.43     |
| Working memory (%) | Single | 90.77 ± 4.39    | 92.31 ± 7.20    |
| Û                  | Dual   | 90.77 ± 7.98    | 86.92 ± 4.39    |



|                   |        | Pre fatigue     | Post fatigue    |
|-------------------|--------|-----------------|-----------------|
| Gait velocity (m) | Single | 1.37 ± 0.20     | $1.36 \pm 0.20$ |
|                   | Dual   | $1.21 \pm 0.21$ | $1.26 \pm 0.18$ |
| Stride length (m) | Single | $1.29 \pm 0.13$ | $1.28 \pm 0.13$ |
|                   | Dual   | $1.21 \pm 0.14$ | $1.23 \pm 0.11$ |
| Step width (cm)   | Single | $7.11 \pm 4.01$ | 7.53 ± 3.90     |
|                   | Dual   | 6.53 ± 3.24     | 7.44 ± 4.09     |



#### **Results: gait balance control**



- Our preliminary findings indicated that
  - young and older might have different strategies to compensate for fatigue
  - working memory was more negatively affected by the acute muscle fatigue during a dual-task gait task, as compared to the single-task condition.
    - Reduced working memory (X)
    - Inability to adequately allocate attentional resources (O)
- Increased CoM sway in frontal plane was reported:
  - in young adults during walking while texting, older adults with complaint of imbalance and individuals with concussion compared to healthy age-matched groups <sup>1</sup>
  - Implying reduced ability in dynamic control of gait



- Our preliminary findings indicated that
  - young and older might have different strategies to compensate for fatigue
  - working memory was more negatively affected by the acute muscle fatigue during a dual-task gait task, as compared to the single-task condition.
    - Reduced working memory (X)
    - Inability to adequately allocate attentional resources (O)
- Increased CoM sway in frontal plane was reported:
  - in young adults during walking while texting, older adults with complaint of imbalance and individuals with concussion compared to healthy age-matched groups <sup>1</sup>
  - Implying reduced ability in dynamic control of gait



- Our preliminary findings indicated that
  - young and older might have different strategies to compensate for fatigue
  - working memory was more negatively affected by the acute muscle fatigue during a dual-task gait task, as compared to the single-task condition.
    - Reduced working memory (X)
    - Inability to adequately allocate attentional resources (O)
- Increased CoM sway in frontal plane was reported:
  - in young adults during walking while texting, older adults with complaint of imbalance and individuals with concussion compared to healthy age-matched groups <sup>1</sup>
  - Implying reduced ability in dynamic control of gait



- Our preliminary findings indicated that
  - young and older might have different strategies to compensate for fatigue
  - working memory was more negatively affected by the acute muscle fatigue during a dual-task gait task, as compared to the single-task condition.
    - Reduced working memory (X)
    - Inability to adequately allocate attentional resources (O)
- Increased CoM sway in frontal plane was reported:
  - in young adults during walking while texting, older adults with complaint of imbalance and individuals with concussion compared to healthy age-matched groups <sup>1</sup>



- Implying reduced ability in dynamic control of gait
- 1 L.-S. Chou et al, 2003; T.M. Parker et al., 2006; S.H. Chen et al., (submitted)

- Our preliminary findings indicated that
  - young and older might have different strategies to compensate for fatigue
  - working memory was more negatively affected by the acute muscle fatigue during a dual-task gait task, as compared to the single-task condition.
    - Reduced working memory (X)
    - Inability to adequately allocate attentional resources (O)
- Increased CoM sway in frontal plane was reported:
  - in young adults during walking while texting, older adults with complaint of imbalance and individuals with concussion compared to healthy age-matched groups <sup>1</sup>



- Implying reduced ability in dynamic control of gait

- Walking and simultaneously performing an attention demanding task (e.g. talking to customer, looking at order lists etc.) may take place concurrently with muscle fatigue toward the end of a shift in a variety of jobs
- Present study
  - Identify the effect of muscle fatigue on dual-task gait characteristics which could be potential risk factors for falling accidents.
  - Provide a baseline database for further research on fatigue-prone population.



1 N. Nenonen. 2013

- Walking and simultaneously performing an attention demanding task (e.g. talking to customer, looking at order lists etc.) may take place concurrently with muscle fatigue toward the end of a shift in a variety of jobs
- Present study
  - Identify the effect of muscle fatigue on dual-task gait characteristics which could be potential risk factors for falling accidents.
  - Provide a baseline database for further research on fatigue-prone population.



1 N. Nenonen. 2013

- Future direction/study
  - to recruit more subject (older worker & young matched control)
  - to identify other biomechanical markers for detecting the fatigueinduced dual-tasking gait/balance deficits
  - to apply the same protocol to examine the effect of muscle fatigue on other tasks with high risk of falling, etc. obstacle-crossing.



- Future direction/study
  - to recruit more subject (older worker & young matched control)
  - to identify other biomechanical markers for detecting the fatigueinduced dual-tasking gait/balance deficits
  - to apply the same protocol to examine the effect of muscle fatigue on other tasks with high risk of falling, etc. obstacle-crossing.



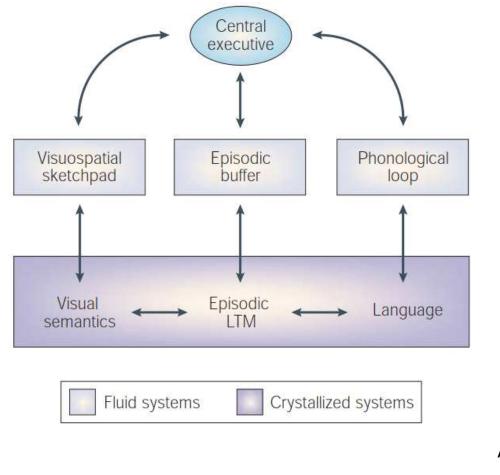
- Future direction/study
  - to recruit more subject (older worker & young matched control)
  - to identify other biomechanical markers for detecting the fatigueinduced dual-tasking gait/balance deficits
  - to apply the same protocol to examine the effect of muscle fatigue on other tasks with high risk of falling, etc. obstacle-crossing.



#### **Funding support**

 Northwest Center for Occupational Health and Safety/ Professional Training Opportunities Program

# Thank You








11/16/2017

#### **Working Memory**



