Mobile ObserVations of Ultrafine Particles (MOV-UP) Advisory August 15th, 2018

Elena Austin, Edmund Seto, Michael Yost, Tim Larson

Outline

- 1. Current Monitoring Status
- 2. Background literature updates
- 3. Preliminary Data Analysis
- 4. Discussion
- 5. Questions

WA State Proviso

- Study the implications of air traffic at Sea-Tac
- Assess the concentrations of ultrafine particulate matter (UFP) in areas surrounding and directly impacted by air traffic
- Distinguish between and compare concentrations of aircraft-related and other sources of UFP
- Coordinate with local governments, and share results and solicit feedback from community
- Produce study report by December 1, 2019

MOVUP Monitoring Locations

Mobile Monitoring Transects + **Stationary Sites**

Dash Point

Federal Way

99

Mobile Monitoring Status

- Winter 2018
 - 16 days of monitoring
- Spring 2018

 14 days of monitoring
- Summer 2018
 - 10 days of monitoring (ongoing)
- Mobile monitoring typically occurs between 12 PM and 5 PM
- Typically monitoring consists of 2 concurrent cars (N and S of the airport)

Fixed Site Monitoring Status

May 4th -	June 4th -	July 13th -	July 27th -	
May 11th	June 13th	July 16th	Aug 1st	
	May 4th - May 11th	May 4th - June 4th - May 11th June 13th	May 4th - June 4th - July 13th - May 11th June 13th July 16th 	May 4th - June 4th - July 13th - July 27th - May 11th June 13th July 16th Aug 1st

Instruments used in mobile and fixed location sampling

Parameter	Instrument
Mobile and Fixed sampling:	
Particle number concentration (35 nm – 1 μ m)	P-Trak 8525, w/ diffusion screens
Particle number concentration (20 nm – 1 μ m)	P-Trak 8525
Particle number concentration (10 nm – 1 μ m)	Condensation Particle Counter 3007
Black Carbon PM	Micro-Aethalometer AE51
CO2	LI-850 Gas Analyzer
Temperature & Humidity	Hobo T, RH datalogger
Position & Time tracking	GPS Receiver DG-500
Fixed Location sampling:	
Particle size distribution, 13 bins	NanoScan 3910

TSI, Inc. model 3007 CPC

MOV-UP Study

Mobile ObserVations of Ultrafine Particles (MOV-UP) Study

Area-weighted number concentration equivalent to ~ half the freeways in LA!

Particle size between ~10 and 30 nm diameter are present at high concentrations at ground level

Hudda et al, ES&T 2014

Local Background UFP (Hudda 2014 Method)

Wind Rose (Nov 21)

Frequency of counts by wind direction (%)

Plume Shifting

1st Drive

2nd Drive

3rd Drive (146th only

PRELIMINARY RESULTS

Winter and partial Spring Mobile Monitoring (2018)

Mean		Predominant Wind	Landing Direction		
Date	Temperature (F)	Direction	(Field Notes)		
7-Feb-18	53	South-east	N		
8-Feb-18	52	South-west	N		
9-Feb-18	48	South-west	N		
12-Feb-18	44	North-west	S		
13-Feb-18	46	South	N		
14-Feb-18	42	South	N then S		
15-Feb-18	43	South-west	N		
16-Feb-18	46	South	N		
7-Mar-18	48	West	S		
8-Mar-18	50	South	N		
9-Mar-18	49	South-west	N		
12-Mar-18	71	East	S then N		
13-Mar-18	51	South-west	N		
14-Mar-18	50	South-west	N		
15-Mar-18	54	West	S		
16-Mar-18	54	South-west	S		
18-Apr-18	55	South-west	S		
19-Apr-18	60	West	S		
20-Apr-18	59	South-west	N		
23-Apr-18	66	North-west	S		
24-Apr-18	74	West	S		
25-Apr-18	69	North-west	S		
26-Apr-18	76	North-west	S		
27-Apr-18	55	South-west	N		

Measurements Primary Roadway (I-5) vs Transect

Measurements Primary Roadway (I-5) vs Transect

PRELIMINARY SPATIAL DISTRIBUTION OF POLLUTANTS

Black Carbon Spatial Distribution

Carbon Dioxide Spatial Distribution

Particle Number Concentration ("Total" >10 nm) Spatial Distribution

Proportion of small 10-20 nm particles

Transects vs Primary Road (I-5)

Proportion of Small Particles (10-20 nm)

Proportion of Small Particles (10-20 nm)

Proportion of small 10-20 nm particles

By Wind Direction

Wind from the SOUTH Mercer Island + WA 99 WA 509 Vashon shon and WA 167 Des Moine **Proportion of Particles** Kent 10-20 nm 0.20 - 0.25WA 99 0.25 - 0.30WA 509 0.30 - 0.35WA 167 0.35 - 0.400.40 - 0.450.45 - 0.500.50 - 0.55ederal Way 0.55 - 0.60Leaflet | C OpenStreetMap

Wind from the NORTH

How can we make better use of the multi-pollutant data we've collected?

Principal Component Analysis (PCA)

Data reduction technique that allows for capturing the variance in the data in a smaller set of variables.

The goal is to summarize the correlations among the observed variables with a smaller set of linear combinations.

Principal Component Analysis (PCA)

 Hypothesis: Using particle size distribution measures collected during mobile monitoring we can identify correlations that correspond to roadway and Ultra-Ultrafine features.

• Method: Perform a PCA with varimax-rotation. Varimax rotation searches for a rotation (i.e., a linear combination) of the original factors such that the variance of the loadings is maximized.

Preliminary PCA Results

PCA Results "Roadway" Feature

On Transect

On I-5

PCA "Roadway" Feature

Mercer I + WA 99 _ WA 509 Buner ukwila Vashon Vashon Island Des Moines hards Maury Island PCA results WA 99 WA 509 **Roadway Component** 147 WA 167 -1.1 - 0.50.5 - 0.70.7 - 1.01.0 - 1.61.6 - 6.9Federal Way Leaflet | C OpenStreetMap

Wind from the SOUTH

Wind from the NORTH

PCA Results "Ultra-UF" Feature

Transects

I-5

PCA "Ultra-UF" Feature

Wind from the SOUTH Mercer I + WA 99 _ 60 WA 509 4 Vashon Vashon Island Des Moines Maury 49/ Island PCA results WA 99 WA 509 **Roadway Component** WA 167 1.0 - 2.62.6 - 2.92.9 - 3.33.3 - 3.83.8-8.1 Federal Way Leaflet | © OpenStreetMap

Wind from the NORTH

Fuel-Based Emission Factors (EF) # Particles/kg_{Fuel}

Quantiles of PCA (Ultra-UF)

Quantiles of PCA (Roadway)

Fuel-Based Emission of UF particles (Particles/kg_{Fuel})

Table 2

Summary of the results reported by previous studies for pollutants' concentrations and emission factors (EF) at different airports.

Study	Airport	Take-off/ Landing	Particle size range (nm)	Particle number (particles/cm ³)	BC (µg/m ³)	PM _{2.5} (μg/m ³)	EF Number (particles/kg fuel)	EF BC (g/kg fuel)	EF PM _{2.5} (g/kg fuel)
Herndon et al., 2005	John F. Kennedy International Airport, New York, USA	Takeoff	7-2500	-	-	-	$(1.0{\pm}0.7)\times10^{14}$	-	-
Herndon et al., 2005	Logan International Airport, Boston, USA	Takeoff	7-2500	-	-	-	$(8.8\pm7.6) \times 10^{15}$	-	-
Westerdahl et al., 2008	Los Angeles International Airport, USA	Takeoff/ Landing	7-350	$2\times 10^4 - 5.8\times 10^5$	1.8-3.8	-	_	-	-
Fanning et al., 2007	Los Angeles International Airport, USA	Takeoff	10-100	$1.4\times10^5-1.4\times10^6$	13.9 ± 14.3 & 14.0 ± 10.2	32-42	-	-	-
Herndon et al., 2008	Hartsfield Jackson Atlanta International Airport, USA	Takeoff	7-2500	-	-	-	$1.8\ \times 10^{15} - 5.6\ \times 10^{15}$	0.2-1.5	-
Hu et al., 2009	Santa Monica Airport, CA, USA	Takeoff	5.6-560	$1\times 10^4 - 3\times 10^5$	0.7-2.7	-	5×10^{16}	-	-
Mazaheri et al., 2009	Brisbane Airport, Australia	Takeoff	4-710	-	-	-	$2.1\times 10^{16}-5.4\times 10^{16}$	-	0.2-0.3
		Landing					$7.7\times 10^{15}-4.3\times 10^{16}$	-	0.3-0.5
Zhu et al., 2011	Los Angeles International Airport, USA	Takeoff	7-320	$0.4 \times 10^4 - \ 8.4 \times 10^4$	0.01-3.6	37.1 ± 15.4	3.4×10^{16}	-	-
Klapmeyer and Marr 2012	Roanoke Regional Airport in western Virginia, USA	Takeoff	-	$1.5\times10^3-1.7\times10^5$	-	-	$1.4\times 10^{16}-7.1\times 10^{16}$	0.2-0.5	-
Lobo et al., 2012	Oakland International Airport, CA, USA	Takeoff	5-1000	$2\times \ 10^{5} - 1.3\times 10^{6}$	-	-	$4 \times 10^{15} - 2 \times 10^{17}$	-	0.1-0.7
Hudda et al., 2014	Los Angeles International Airport, USA	Takeoff/ Landing	10-1000	$4\times 10^4 - 6\times 10^4$	1.4-1.6	-	-	-	-
Lobo et al., 2015	Hartsfield-Jackson Atlanta International Airport	Takeoff	5-1000	-	-	-	$6 \times 10^{17} - 2 \times 10^{18}$	-	0.1-0.6
Ren et al., 2016	Tianjin International Airport, China	Takeoff	10-1000	$4\times 10^4 - 4.4\times 10^5$	-	-	$2\times 10^{15} - 3.2\ \times 10^{16}$	-	-
		Landing		$6\times~10^4-4.5\times10^5$	-	-	$2.5\times 10^{15} - 3.3\ \times 10^{16}$	-	_
Current study	Los Angeles International Airport, USA	Takeoff	7-500	$1.53\times10^5{\pm}3.11\times10^4$	$2.87 \pm 0.0.3$	33 ± 0.15	$(8.69 \pm 1.20) \times 10^{15}$	0.12 ± 0.02	0.38 ± 0.04
		Landing					$(8.16 \pm 1.00) \times 10^{15}$	0.11 ± 0.01	0.40 ± 0.05

Shirmohammadi, F., Sowlat, M. H., Hasheminassab, S., Saffari, A., Ban-Weiss, G., & Sioutas, C. (2017). Emission rates of particle number, mass and black carbon by the Los Angeles International Airport (LAX) and its impact on air quality in Los Angeles. *Atmospheric Environment*, *151*, 82-93.

Preliminary Fixed Site Small Particles (~15.4 nm)

Next Steps

- Continue mobile and stationary sampling to end of year
- Repeat analyses on full data set
- Analyze fixed site data
- Estimate daily Emission Rates for roadways and airport
- Report by December 2019
- Poll Advisory Board for input on priorities for other potential next steps

QUESTIONS

Interactive Feedback Session

Assess the impact of time-of-day on the near-airport ultrafine PM monitoring data?

When poll is active, respond at **PollEv.com/jeffryhshira287** or

Text JEFFRYHSHIRA287 to 22333 once to join

- (1) No priority
- (2) Low priority
- (3) Medium priority
- (4) High priority
- (5) Urgent

Assess the impact of meteorological conditions on ultrafine PM levels?

When poll is active, respond at **PollEv.com/jeffryhshira287** or Text **JEFFRYHSHIRA287** to **22333** once to join

- (1) No priority
- (2) Low priority
- (3) Medium priority
- (4) High priority
- (5) Urgent

Obtain flight data and relate flight traffic to ultrafine PM measurements?

When poll is active, respond at **PollEv.com/jeffryhshira287** or Text **JEFFRYHSHIRA287** to **22333** once to join

- (1) No priority
- (2) Low priority
- (3) Medium priority
- (4) High priority
- (5) Urgent

Since aviation fuel potentially contains more sulfur than roadway diesel – thereby making it a potentially useful tracer for aircraft emissions – should SO2 measurements be incorporated into our study of ultrafine PM measurements?

When poll is active, respond at **PollEv.com/jeffryhshira287** or

Text JEFFRYHSHIRA287 to 22333 once to join

- (1) No priority
- (2) Low priority
- (3) Medium priority
- (4) High priority
- (5) Urgent