Preliminary Study Shows: Hepatocellular GCLC/GCLM Production is Not Significantly Different with Zinc Treatment

Larissa Jones¹, Isaac Mohar², and Terry Kavanagh²

¹Boston College, Chestnut Hill, MA; ²Dept of Env. and Occ. Health Sciences, University of Washington, Seattle, WA

Introduction
Zinc is essential to cellular function in all organisms. It plays an important role in stimulating the activity of almost 100 different enzymes and acts as a component of certain proteins [1]. Recent research has also shown that zinc may be hepatoprotective in toxic conditions by preventing cellular apoptosis induced by tumor necrosis factor-α (TNF-α) [2, 3]. The tripeptide glutathione (GSH), more formally called L-glutamyl-L-cysteinylglycine is also a prominent player in protection of the cell from TNF-α as well as environmental toxins. Glutamate cysteine ligase (GCL) is the rate-limiting enzyme in GSH synthesis and is made up of catalytic (GCLC) and modifier (GCLM) subunits [4]. Hepatocytes (liver cells) naturally produce these proteins, GCLC and GCLM, but with the use of transformed hepatocytes this production can be increased. The Hepa-1 cells used in the present study are parental cells. Hepa-V cells have been transfected with a metallothionein (zinc responsive-binding protein) promoter. CR17 cells have been transfected with the promoter and the GCLC/GCLM expression vectors (Fig 1).

Rationale
Previous research in our lab [2] shows an increased presence of both the GCLC and GCLM subunits of GCL in Hepa-V and CR17 cells on exposure to 55μM zinc sulfate for 6hrs. The objective of the present study was to determine the optimum zinc sulfate treatment for GCL expression and to characterize possible morphological and health benefits of Zn to Hepa-1, Hepa-V and CR17 cells. We anticipate that treatments of 10, 20, 40 μM Zn will increase GCLC/M expression in CR17 cells with cell death and significant morphological changes occurring in all cells at 80 μM Zn. CR17 cells should produce the most GCLC/M.

Materials and Methods

Cell Line
Mouse liver hepatoma cell lines: H1, HV, CR17

Materials
100mls/dish, Fetal Bovine Serum (FBS), Penicillin/streptomycin

Methods
Collect media and 100mm dish, 10ml DMEM/F12 media

Cell Culture
Transformed hepatocyte line.

Cell Death
Trypan Blue method: (9H1, 9H2 μM) 98.5%

GCLC and GCLM Protein Expression

Figure 1. Western blot of GCLC/M in CR17 cells from data set #3. Data sets #1 and #2 showed no difference in GCLC/M presence with treatment.

Results

Morphology
Observation of cell Set #1 and #2 showed slight rounding of HV and CR17 cells types after treatment with Zn as data not shown. As shown in Figure 3, no morphological differences were seen in CR17 cells in the 0, 10, or 80μM zinc sulfate treatments in Set #3; nor were they detected in the 10 and 40 μM treatments. No difference was seen in HV or H1 only.

Cell Growth

Figure 4. Average (±SEM) of percent change in confluency across all three data sets for each cell line.

Cell Death

Figure 5. Average percent cell death in all three data sets across all three cell lines.

GCLC/GCLM Protein Expression

Figure 6. Western blot of GCLC/M in CR17 cells from data set #3. Data sets #1 and #2 showed no difference in GCLC/M presence with treatment.

Discussion
With this study we hoped to see an up-regulation of GCLC and GCLM subunits in CR17 cells. Three trials of this experiment were completed, with variable results, therefore no conclusions can be made. However, the preliminary results of this study suggest that:

• HI cells experience may experience no significant morphological changes as a result of Zn treatment (at all doses)
• HV and CR17 cells may experience morphological changes after Zn treatments (all doses). This may be caused by the Mt (zinc-binding) promoters with which they are transfected.
• There may be no significant difference in cell death trend between cell types. Which could show that no one cell type is significantly more sensitive to zinc treatments. The descending order of cell death between the cell types (Figure 5) is proportional to each cell type’s rate of growth.
• Zinc may inhibit growth of Hepa-1 cell. There is an indication that at 80μM Zn treatment there is a significant difference between the Hepa-1 cells and both Hepa-V and CR17 cells.
• No conclusion about the up-regulation of GCLC and GCLM can be made because of the variability in the data.
• Further trials of this experiment are needed to make any real conclusions. The variability in the small data set is too great. However, this study may have identified some interesting trends.

Citations

Acknowledgments
Special thanks to: Dr. Kavanagh for making his lab available for this research, and to Isaac Mohar, Tiffany Salt-Ladd, and Christa Rett for helping me with the experimental set-up. I’d especially like to thank Dr. Mohar for introducing me to the fascinating world of hepatology.

This research was made possible by funding through the National Institutes of Health (5R01DK62514-13, 5R01DK085931, and the Awards for Training Among Graduate Students Program).

Contact Information
Isaac Mohar (isaacm@u.washington.edu)
Terry Kavanagh (tkavanagg@uw.edu)