Effects of GSTT1, GSTM1, and CYP 3A5 Polymorphisms on Levels of Isothiocyanate Metabolites and Midazolam

Rebekah J. Klint, Emma J. Poulton, and David L. Eaton
Environmental Health Research Experience Program, Department of Environmental and Occupational Health Sciences, University of Washington

Objectives
- Investigate how GSTT1 and GSTM1 affect isothiocyanate (ITC) excretion rates in vivo.
- Investigate how CYP3A5 affects the rate of metabolism of Midazolam (MDZ) in vivo.

Introduction
- ITCs are natural nonnutritive components in the diet that have putative antioxidant and chemopreventive properties.
 - Sulfurophane (SFN) is an ITC highly concentrated in cruciferous vegetables (e.g. broccoli and broccoli sprouts).
- CYP3A4 is a gene involved in the biotransformation of more than 50% of pharmaceuticals and has important pharmacological and toxicological implications including drug clearance and efficacy.
 - CYP3A4 activity is dramatically decreased by SFN in primary cultures of human hepatocytes via a PXR-mediated mechanism.
- Rifampicin, a first line treatment for tuberculosis (TB), increases CYP3A4 levels to the extent that it metabolizes antiretroviral drugs for HIV/AIDS so quickly that they are contraindicated and rendered ineffective. SFN could prevent the rifampicin mediated CYP3A4 induction in TB/AIDS patients.
- The CYP3A5 gene affects metabolism of MDZ.
- CYP3A5 is related to CYP3A4 in that it has similar substrate specificity but is polymorphic in the human population.
- GST is a family of genes involved in carcinogen detoxification including GSTT1 and GSTM1.
 - GSTs may affect the extent to which SFN is available in the body because they conjugate SFN/ITC with glutathione and facilitate clearance.
- Hypothesis: GSTT1 and/or GSTM1 positive individuals will clear ITCs more rapidly than GSTT1 and/or GSTM1 null subjects as reflected in urinary ITC levels, and persons expressing CYP3A5 will metabolize MDZ at a faster rate than those who lack it.

Methods and Materials
- 23 healthy adults received (400umoles/day) of SFN daily for one week.
- Participants were dosed with 1 mg MDZ, and blood was drawn at defined time-points.
- MDZ area under the curve (AUC) was used as a measure of CYP3A4/CYP3A5 activity. MDZ ng/ml in blood plasma was calculated using HPLC MSMS. AUC was calculated using a non-compartmental method in the program WinNonLin. Stata 11 was used to perform regression. P values < .05 were significant.

GSTs may affect the extent to which SFN is available in the body because they conjugate SFN/ITC with glutathione and facilitate clearance.

The graph above shows the CYP3A5 genotypes separated. Blue represents Wild Type (G/G), red represents Mut (A/A), and green represent Het (G/A).

The table above shows the participant’s ID #, the corresponding genotype, and the average concentration of MDZ.

The table above shows the participant’s ID #, the corresponding genotype, and the average concentration of MDZ.

GST is a family of genes involved in carcinogen detoxification including GSTT1 and GSTM1.

Methods and Materials
- Genotyping of GSTT1/GSTM1 was completed by PCR and gel electrophoresis while CYP3A5 was performed on Applied Biosystem’s 7900 with ABI’s assay-by-design.

Results

<table>
<thead>
<tr>
<th>ID #</th>
<th>Genotype</th>
<th>Average uninduced MDZ AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2268</td>
<td>WT (G/G)</td>
<td>451</td>
</tr>
<tr>
<td>2271</td>
<td>WT (G/G)</td>
<td>430</td>
</tr>
<tr>
<td>2297</td>
<td>WT (G/G)</td>
<td>421</td>
</tr>
<tr>
<td>2303</td>
<td>WT (G/G)</td>
<td>412</td>
</tr>
<tr>
<td>2326</td>
<td>WT (G/G)</td>
<td>409</td>
</tr>
<tr>
<td>2341</td>
<td>WT (G/G)</td>
<td>408</td>
</tr>
<tr>
<td>2378</td>
<td>WT (G/G)</td>
<td>418</td>
</tr>
<tr>
<td>2384</td>
<td>WT (G/G)</td>
<td>395</td>
</tr>
<tr>
<td>2415</td>
<td>WT (G/G)</td>
<td>386</td>
</tr>
<tr>
<td>2434</td>
<td>WT (G/G)</td>
<td>374</td>
</tr>
<tr>
<td>2464</td>
<td>WT (G/G)</td>
<td>360</td>
</tr>
<tr>
<td>2489</td>
<td>WT (G/G)</td>
<td>342</td>
</tr>
<tr>
<td>2493</td>
<td>WT (G/G)</td>
<td>326</td>
</tr>
<tr>
<td>2499</td>
<td>WT (G/G)</td>
<td>317</td>
</tr>
<tr>
<td>2499</td>
<td>WT (G/G)</td>
<td>312</td>
</tr>
</tbody>
</table>

The graph above shows the CYP3A5 genotypes separated. Blue represents Wild Type (G/G), red represents Mut (A/A), and green represent Het (G/A).

The table above shows the CYP3A5 genotypes separated. Blue represents Wild Type (G/G), red represents Mut (A/A), and green represent Het (G/A).

The table above shows the participant’s ID #, the corresponding genotype, and the average concentration of MDZ.

Future studies will consider a larger sample size.

Conclusions
- 19% (4/21) of participants were GSTT1 null
- 57% (15/21) were GSTM1 null
- 70% (16/23) of participants were found to be WT (G/G)
- 22% (5/23) were found to be Het (G/A)
- 8% (2/23) were found to be Mut (A/A)
- No correlation was found between GSTT1 and/or GSTM1 genotypes and urinary ITC levels or CYP3A5 genotypes and MDZ levels.

Acknowledgments

Funded by Award # R25ES016150 from the National Institute of Environmental Health Sciences. Special thanks to Emma Poulton, David Eaton, Theo Bammlier, Fred Farin, Jesse Tsai, and Susan Inman.