A FIELD TEST KIT FOR ARSENIC IN DRINKING WATER: LABORATORY EVALUATION

Fang-Yu Lin, Department of Public Health, China medical University, Taichung, Taiwan

David Kalman, School of Public Health and Community Medicine, University of Washington, Seattle, Washington.

Introduction

Worldwide, there are millions of people using drinking water polluted with arsenic including in Argentina, Australia, Bangladesh, Chile, China, Hungary, India, Mexico, Peru, Taiwan, and Thailand. Arsenic contamination in ground water may occur because of dissolution of natural material or from industrial effluent. The concentration of arsenic in ground water varies widely, so it cannot be accurately predicted by testing of small number of water samples. The major exposure to arsenic is by ingestion resulting in arsenicosis, which leads to cancer, reproductive effects and effects in skin, blood vessels, and limbs. Those people with arsenic poisoning experience great suffering and are often in the poorest regions and communities. Because of the constraints of cost, and too many samples to test, the Quick Arsenic field test kit is a useful tool for detecting concentrations of arsenic.

Objective

This report tries to find out whether the mineral and chemical composition in the drinking water plays a role in the test kit results.

Method

I am using the Quick Arsenic field test kit to test the effect of synthetic urine, MMA, DMA and salts in test kit accuracy.

1. Testing the inorganic arsenic in de-ionized water (DI water) with concentration of 5, 10, 50, 100, 150, and 300 ppb in Figure 5. The color chart is in Figure 6.

2. Then, I test the different concentration of inorganic arsenic in synthetic urine and comparing of the result of the DI water as shown in Figure 7.

3. Finally, as shown in Figure 8, I add different salts of SO$_4^{2-}$, Fe$^{2+}$, Fe$^{3+}$, and NO$_3^-$ in the 200 ppb of inorganic arsenic in DI water. The result of NO$_3^-$ is much darker.

Result

The field test kit is for testing inorganic arsenic. It does not work on organic arsenic, even in high concentrations. Its limitation is 10 ppb from the past literature, but in my tests, color was seen at 5 ppb.

In comparing the result of DI water and synthetic urine, synthetic urine gave less of a response. When arsenic is constant, the presence of NO$_3^-$ in a darker color or stronger response.

Conclusion

Acknowledgments

Special thanks to: Dr. Kalman for teaching me the techniques and concepts, and to James Meadows for helping my poster revision. This research was made possible by funding through the University of Washington Department of Environmental and Occupational Health Sciences and the National Institute of Environmental Health Sciences (1R25ES016150–01).