Examining nonfatal work injuries among self-employed and wage-salaried workers in the US agriculture, forestry, and fishing industry

Solaiman Doza
Ph.D. Candidate
Environmental and Occupational Health
College of Health
Agriculture, Forestry, and Fishing (AgFF) industry

Agriculture, food, and related industries account for:

- 11% of U.S. employment
- 5.2% of U.S. gross domestic product (GDP)
- AgFF industry comprise high self-employment (Pegula SM. 2004; ERS, USDA. 2020)

BLS 2021 data –

- AgFF industry – highest fatality (death) rate (19.5 per 100,000 FTE worker)
- AgFF industry – second-highest nonfatal injury and illness rate (180 per 10,000 FTE worker)

Current gaps in injury surveillance

- Bureau of Labor Statistics (BLS) nonfatal injury surveillance does not track:
 - Self-employed
 - Small businesses (<10 employees)
- BLS underestimates nonfatal work injuries among agricultural workers (Leigh et al. 2014)
U.S. agricultural workers

<table>
<thead>
<tr>
<th>Self-employed owner operator</th>
<th>Family farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Engage in various production activities (i.e., operating machinery/equipment, driving tractors)</td>
<td>- Represent more than 90% of US farms</td>
</tr>
<tr>
<td>- Predominantly non-Hispanic white</td>
<td>- Self-employed operators and families provide much of the labor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hired wage or salaried employees</th>
<th>Large and midsize farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hired to carry out specific tasks. (i.e., fruit or vegetable picking)</td>
<td>- Represent 3% of US farms and yield 44% of annual production</td>
</tr>
<tr>
<td>- Hispanic and other migrant workers</td>
<td>- Employ hired wage or salaried workers</td>
</tr>
<tr>
<td></td>
<td>- Commodities – Dairy, beef and high-value crops like vegetables, nursery/greenhouse products, and fruits/tree nuts</td>
</tr>
</tbody>
</table>

U.S. forestry and logging workers

Approximately 14% US loggers are self-employed

- Cutting down trees
- Sorting and chipping
- Transporting woods

Use Chainsaw

Manually handle and transport

Mechanized logging

- Large investment
- Trained operator
- Utilize harvester, forwarder etc.

Fig 1. Manual logging operation – Felling trees, limbing and bucking (OSHA)

Fig 2. Vimek 404 harvester

Content source: Occupational Safety and Health Administration
U.S. fishing workers

About 42% US fishermen are self-employed

Owner-operated vessel types:

• Gillnetters
• Purse seiner
• Small trollers
• Crabbers

Tasks

<table>
<thead>
<tr>
<th>Owner or skipper</th>
<th>Deckhands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate and navigate vessels</td>
<td>Set nets across the mouths of rivers or inlets</td>
</tr>
<tr>
<td>Vessel and equipment maintenance</td>
<td>Use pots and traps to catch fish or shellfish (i.e., lobsters and crabs)</td>
</tr>
<tr>
<td>Locate catch and catching fish</td>
<td>Use dredges to gather other shellfish like oysters and scallops</td>
</tr>
</tbody>
</table>

Fig 3. Deckhand handling Crab pots

Fig 4. Deckhands unloading crabs
Research Question

Do nonfatal injuries differ between self-employed and wage-salaried?

Aim a: Compare work-related injury rates between self-employed and wage-salaried AgFF workers

Aim b: Compare the injury nature, body part, and external causes between self-employed and wage-salaried AgFF workers
Study sample and primary outcome

Inclusion Criteria

• National Health Interview (NHIS) survey years 2004 to 2017 (14 years)
• All adult AgFF industry participants (>18 years):
 • “working for pay at a job or business,”
 • “with a job or business but not at work,”
 • or “working, but not for pay, at a family-owned job or business”.
• Self-employed and private industry workers
• State, local, and federal employees will be excluded

Injury episode counts

• Participants reported up to 10 medically treated injury episodes during last 3 months
• Work-associated injuries – “Working at a paid job”

Annual rate of injury per 100 full-time equivalent (FTE) worker:

• (Number of annual injury-episode × 200,000) / Number of hours worked by the AgFF worker group
Covariates (AgFF worker characteristics)

Class of worker
- Self-employed
- Wage-salaried

Sociodemographic
- Age (years)
- Gender (male/female)
- Race/ethnicity (Hispanic/White/Black/All other race)
- Education level (<high school, high school, > college degree)

Work characteristics
- Job tenure (years)
- Weekly work hours
- More than one job
Results

<table>
<thead>
<tr>
<th></th>
<th>Wage-salaried (n = 2318)</th>
<th>Self-employed (n = 1432)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (%)</td>
<td>76</td>
<td>75</td>
</tr>
<tr>
<td>Age (mean ± SD)</td>
<td>40.9 ± 14.8</td>
<td>53.8 ± 14.8</td>
</tr>
<tr>
<td>White non-Hispanic (%)</td>
<td>52</td>
<td>95</td>
</tr>
<tr>
<td>No high school diploma (%)</td>
<td>41</td>
<td>12</td>
</tr>
<tr>
<td>Job tenure years (mean ± SD)</td>
<td>9.5 ± 14.8</td>
<td>22.7 ± 14.1</td>
</tr>
<tr>
<td>Weekly work hours (mean ± SD)</td>
<td>44.3 ± 18.6</td>
<td>49.1 ± 23.2</td>
</tr>
<tr>
<td>More than one job (%)</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>
Results

Nonfatal injury rate per 100 AgFF worker FTEs

Injury rate by gender and worker type

- Wage-salaried
- Self-employed

US AgFF injury rate (BLS 2021)

- Male
- Female
Results

<table>
<thead>
<tr>
<th>Variables</th>
<th>Unadjusted Odds ratio (95% CI)</th>
<th>Adjusted Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class of worker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage-salaried</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Self-employed</td>
<td>1.10 (0.54, 2.22)</td>
<td>0.99 (0.42, 2.34)</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Injury Source</th>
<th>Wage-salaried (%)</th>
<th>Self-employed (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Being struck</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>Fall</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Overexertion</td>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>Transportation</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Cut/piercing</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Machinery</td>
<td>9</td>
<td>-</td>
</tr>
</tbody>
</table>
Strengths & Limitations

Strengths

- Nationally representative sample – population estimates
- Work injury reported by workers (vs. employer)
- Work-associated injury burden – self-employed AgFF workers
- Multiple survey years – large sample size

Limitations

- Not representative of individual industries and occupations
- Unable to compare work activities & exposures – self-employed vs. wage-salaried workers
- Healthy worker effects and survival bias – underestimation of nonfatal injury prevalence
- Recall and reporting bias – self-reported data
Key takeaway

- Self-employed US AgFF workers showed marginally higher injury rate and different injury source indicating their work exposure could be different from the wage-salaried.
- Work exposures of female self-employed AgFF workers need to be evaluated to mitigate their higher injury burden.
- Self-employed also had distinct sociodemographic characteristics:
 - Older
 - Non-Hispanic white
 - Higher educated
 - Longer job tenure
- Further exploration of the work exposures and injury characteristics are needed to determine the burden of self-employed AGFF workers.
Acknowledgements

Doctoral Committee

Co-major Advisors
- Dr. Laurel Kincl
- Dr. Viktor Bovbjerg

Committee members
- Dr. Molly Kile
- Dr. Adam Branscum
- Dr. Tala Navab-Daneshmand (GCR)

RISC Study
- Amelia Vaughan
- Jasmine Nahorniak
- Samantha Case

Family/Friend/Peer
- Nusrat Jahan Ritu (Spouse)
- Khalid Ibne Masood
- Hossain Ahmed Taufiq
- Stephanie Ann Foster
- Kwadwo Adu Boakye
- Hudson-Hanley, Barbara
- Yerram Divya Smitha Reddy
- Patil, Vaishali
THANK YOU
NHIS utilizes a hierarchy of sampling –

- Household- and person-level base weights

Final sample weights =

- Base weights are adjusted for
 - Non-response
 - Ratio adjustment

Sample adult weight provided by NHIS

For pooled analysis, new weighting variable =

- Annual sample adult weight / total survey years (14 years)

Three design periods –

- 1995-2005
- 2006-2015
- 2016-2019

New design variable =

- Add multiples of 1000 to each design period
Statistical Analysis

<table>
<thead>
<tr>
<th>Descriptive analysis</th>
<th>Prevalence of self-employment</th>
<th>Sociodemographic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Work characteristics</td>
</tr>
<tr>
<td>Annual injury episode rate/100 FTE worker</td>
<td></td>
<td>Class of workers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sociodemographic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Work characteristics</td>
</tr>
<tr>
<td>Injury characteristics</td>
<td></td>
<td>Class of workers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sociodemographic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Work characteristics</td>
</tr>
</tbody>
</table>

Work-associated annual rate of injury episodes per 100 full-time equivalents (FTE):

\[
\frac{\text{Number of annual injury-episode} \times 200,000}{\text{Number of hours worked by the AgFF worker groups}}
\]
Statistical Analysis (Modeling)

Exploratory Poisson regression models for each of the following:

- Class of workers
- Injury episode counts
 - Missed workdays,
 - Number of nights in the hospital

Confounding and Effect modification:

- Sociodemographic
- Work characteristics.

Likelihood ratio test (LR) to compare:

- Poisson vs. negative binomial models

Best-fitted model:

- Akaike information criterion (AIC)
- **Models with confounding terms**
 - Backward Selection method (pre-specified significance level $p = 0.10$)
- **Models with Effect modifiers**
 - Forward Selection with switching (pre-specified significance level $p = 0.10$)
<table>
<thead>
<tr>
<th>Variables</th>
<th>Unadjusted Odds ratio (95% CI)</th>
<th>Adjusted Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class of worker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage-salaried</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Self-employed</td>
<td>1.10 (0.54, 2.22)</td>
<td>0.99 (0.42, 2.34)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Female</td>
<td>0.50 (0.16, 1.53)</td>
<td>0.52 (0.16, 1.77)</td>
</tr>
<tr>
<td>Age groups (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-39 years</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>40-49 years</td>
<td>1.46 (0.67, 3.17)</td>
<td>1.29 (0.54, 3.10)</td>
</tr>
<tr>
<td>50-59 years</td>
<td>0.72 (0.23, 2.22)</td>
<td>0.78 (0.26, 2.36)</td>
</tr>
<tr>
<td>>60 years</td>
<td>1.04 (0.33, 3.22)</td>
<td>1.02 (0.25, 4.08)</td>
</tr>
<tr>
<td>Educational attainment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some college or higher</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>0-12th grade (No diploma)</td>
<td>0.77 (0.29, 2.05)</td>
<td>0.80 (0.30, 2.14)</td>
</tr>
<tr>
<td>High school grad or GED</td>
<td>1.20 (0.52, 2.77)</td>
<td>1.25 (0.55, 2.87)</td>
</tr>
<tr>
<td>Current/longest job tenure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4 years</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>5-9 years</td>
<td>1.02 (0.32, 3.20)</td>
<td>0.92 (0.29, 2.98)</td>
</tr>
<tr>
<td>>10 years</td>
<td>0.87 (0.40, 1.90)</td>
<td>0.79 (0.35, 1.79)</td>
</tr>
<tr>
<td>Hours worked past week</td>
<td></td>
<td></td>
</tr>
<tr>
<td><35 hours</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>35-49 hours</td>
<td>0.74 (0.28, 1.93)</td>
<td>0.68 (0.24, 1.94)</td>
</tr>
<tr>
<td>>50 hours</td>
<td>0.88 (0.35, 2.20)</td>
<td>0.74 (0.25, 2.16)</td>
</tr>
</tbody>
</table>
Bibliography

