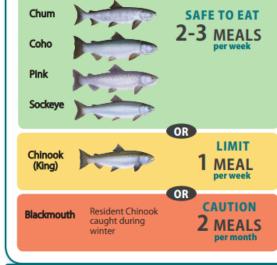
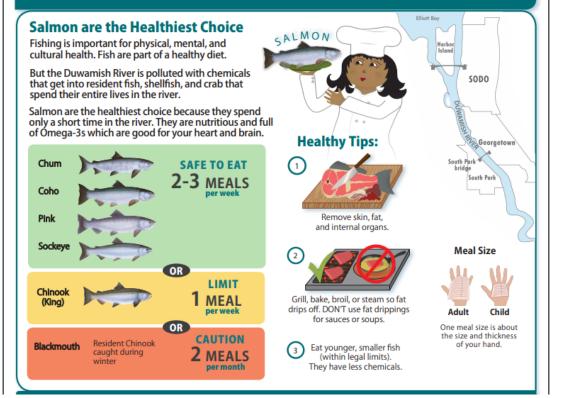
NOTE Focus is on Salmon so not discussing resident fish


Fishing for the Safest Seafood from the Duwamish River? Eat Salmon.

Salmon are the Healthiest Choice

Fishing is important for physical, mental, and cultural health. Fish are part of a healthy diet.

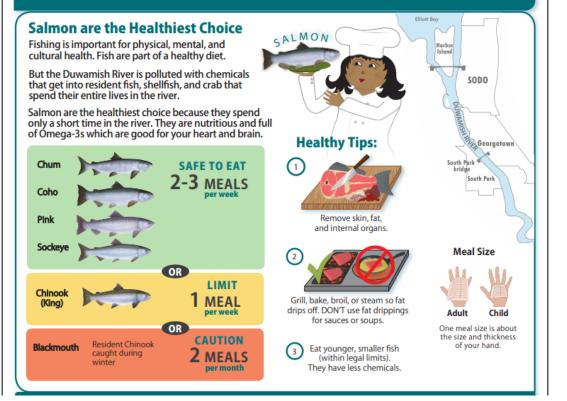
But the Duwamish River is polluted with chemicals that get into resident fish, shellfish, and crab that spend their entire lives in the river.


Salmon are the healthiest choice because they spend only a short time in the river. They are nutritious and full of Omega-3s which are good for your heart and brain.

Fishing for the Safest Seafood from the Duwamish River? Eat Salmon.

What is the Purpose of Fish Advisories?

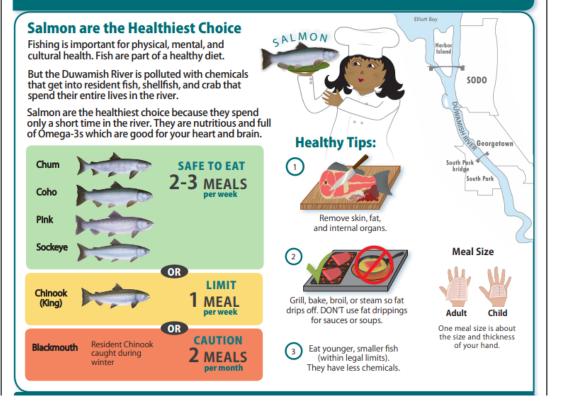
To **Protect** Public Health


- Help people make healthy decisions about how much fish is *safe* to eat.
- This is important because some fish have pollutants at levels that can harm your health.

To **Promote** Public Health

• Help people make decisions about how much fish to eat to get health *benefits* of eating fish (healthy heart, early brain development).

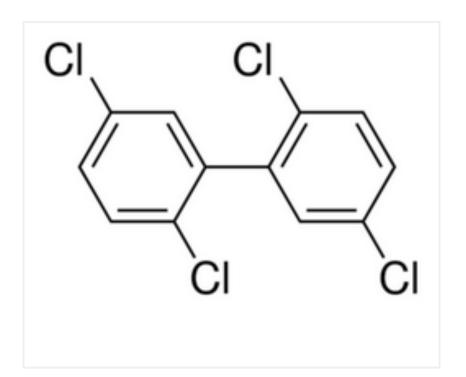
Fishing for the Safest Seafood from the Duwamish River? Eat Salmon.


Fish advisories are based on:

- How much of a contaminant is in the fish
- How much of a contaminant is "safe" for people to ingest

[Acceptable Daily Intake (ADI) or Reference Dose (RfD)]

Fishing for the Safest Seafood from the Duwamish River? Eat Salmon.



For the Lower Duwamish River, fish advisories are based on levels of polychlorinated biphenyls (PCBs) in fish.

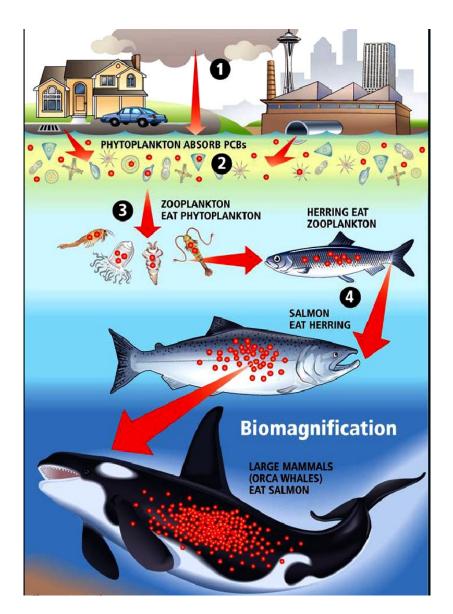
WHAT ARE PCBs?

WHAT ARE PCBs?

PCBs are a group of chemicals formed by chlorine atoms attached to a pair of benzene rings.

There are over 200 PCBs (known as "congeners").

There are no known natural sources of PCBs.


PCBs were used as coolants and lubricants.

They don't burn easily and are good insulators.

They are found in transformers and other electrical equipment, and in products like caulk and paints.

<u>From:</u> <u>https://www.sigmaaldrich.com/catalog/</u> <u>product/sial/35599?lang=en®ion=US</u> From: https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=140&tid=26

From: <u>https://www.blue-growth.org/</u> <u>Plastics_Waste_Toxins_Pollution/PCBs_</u> <u>Poly_Chlorinated_Biphenyls.htm</u>

WHAT ARE PCBs?

PCBs build up in the environment and can harm your health. They accumulate in fish and marine mammals, reaching levels that may be many thousands of times higher than in water.

The manufacture of PCBs was banned in the U.S. in 1977, but PCBs can still be released to the environment from:

- hazardous waste sites;
- improper disposal of wastes and consumer products;
- leaks from old electrical transformers containing PCBs;
- burning of some wastes in incinerators

The most important route of PCB exposure is through consuming fish contaminated with PCBs.

From: https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=140&tid=26

WHAT ARE PCBs?

What are the human health effects from PCBs?

PCBs

 $\label{eq:linear} \begin{array}{l} \textbf{Acute (short-term)} - \textbf{Irritation/burning of eyes, face,} \\ \textbf{and chloracne} \end{array}$

Chronic (long-term) – Liver disorders, reproductive effects, developmental effects, and probably cancer

PCBs also have numerous well-documented health effects, including cancer, for animals.

EPA - PCBs a probable human carcinogen

High exposure to PCBs can cause skin conditions such as acne and rashes. High exposure is also associated with possible liver damage and cancer.

Babies of women who ate large amounts of PCBcontaminated fish showed problems with motor skills and a decrease in short-term memory for several years.

Other studies suggest that children born to and nursed by mothers exposed to high levels of PCBs have compromised or damaged immune systems.

<u>From: https://www.slideserve.com/yachi/pcbs-in-building-materials</u>

From: https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=140&tid=26

Integrated Risk Information System

HOW DO WE KNOW THE AMOUNT OF PCBs THAT IS SAFE TO INGEST?

From: https://www.epa.gov/iris

HOW MUCH PCB CONTAMINATED FISH IS SAFE TO EAT?

Integrated Risk Information System

Different agencies use similar studies to determine the amount of PCBs that is safe to ingest, but they use different terms for this amount.

EPA's Integrated Risk Information System (IRIS) uses the term Reference Dose (RfD)

The Agency for Toxic Substances and Disease Registry (ATSDR) uses the term Minimal Risk Level (MRL)

Others use Acceptable Daily Intake (ADI)

I.A.1. Oral RfD Summary

Critical Effect	Experimental Doses*	UF	MF	RfD
Ocular exudate, inflamed and prominent Meibomian	NOAEL: None	300	1	2E-5 mg/kg-
glands, distorted growth of finger and toe nails; decreased antibody (IgG and IgM) response to sheep erythrocytes	LOAEL: 0.005 mg/kg- day			day
Monkey Clinical and Immunologic Studies				
Arnold et al., 1994a,b; Tryphonas et al., 1989, 1991a,b				

EPA and ATSDR indicate that the amount of PCBs that is safe to ingest every day for a ~155lb (70Kg) adult is: 0.02 ug/Kg/day

Note: EPA has determined that PCBs are "probable human carcinogens," which means there is strong evidence that they cause cancer in animals, but not strong evidence in humans.

https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0389_summary.pdf

https://www.atsdr.cdc.gov/toxprofiles/tp17.pdf

Final

Public Health Assessment

Human Health Evaluation of Contaminants in Puget Sound Fish

Lower Duwamish Waterway Seattle, King County, Washington CERCLIS NO. WA0002329803

September 30, 2003

Prepared by

Washington State Department of Health Under Cooperative Agreement with the Agency for Toxic Substances and Disease Registry

Waskington State Department of Health

> Division of Environmental Health Office of Environmental Health Assessments P.O. Box 47825 Olympia, Washington 98504-7825 1-877-485-7316 http://www.doh.wa.gov/fish

DOH 334-104 October 2006

For people with disabilities, this document is available on request in other formats. To submit a request, please call 1-800-525-0127 (TDD/TTY call 711).

Mary C. Selecky Secretary of Health

Joan Hardy, Ph.D. Toxicologist

Gary Palcisko, M.S. Health Assessor

https://www.doh.wa.gov/Portals/1/Documents/Pubs/334-278.pdf

https://www.doh.wa.gov/Portals/1/Documents/Pubs/334-104.pdf

Remember: In the Duwamish, fish advisories are based on levels of polychlorinated biphenyls (PCBs).

SUPERFUND RESEARCH PROGRAM ENVIRONMENTAL & OCCUPATIONAL HEALTH SCIENCES

SUMMARY OF DATA FOR PCB LEVELS IN SALMON

		Mean PCB Level	Pango	Number	Meal Limit Calculation	Advisory Limits	
Salmon Species	Location	(ng/g)	Range PCB Levels	Samples	per month (risk based)	per month (adjusted for benefits)	Comments
Samon Species	Location	(ייש / שיי)	FCD LEVEIS	Samples	permontin (insk based)		comments
Chinook							
2006 DOH Publication	All Puget Sound	54*	11223	210	3.5	4 (1/wk)**	*Skinless fillets only / **assumes cooking per DOH recs
2006 DOH Publication	Duwamish River	57.2		65*	3	н	* 31 composite, 34 individual samples
2003 DOH Publication	Duwamish River	55	64*	45	3.7		* 95% Upper Confidence Interval
2016 NOAA Publication	Duwamish River	56		65			
2016 NOAA Publication	Puget Sound	76		28			
2016 NOAA Publication	Alaska	7.7	511	53			
Coho							
2006 DOH Publication	All Puget Sound	31.8*	5126	221	5.9	8-12 (2-3/wk)**	*Skinless fillets only / **assumes cooking per DOH recs
2006 DOH Publication	Duwamish River	39.6		45*	4	н	* 44 composite, 1 individual samples
2003 DOH Publication	Duwamish River	39	45*	45	5.2		* 95% Upper Confidence Interval
2016 NOAA Publication	Puget Sound	31	2735	157			
2016 NOAA Publication	Alaska	2.9	1.64	22			
Sockeye							
2016 NOAA Publication	Alaska	14.4	3.6130	142			
2016 NOAA Publication	British Columbia	5.2	1.513	52			
Pink							
2016 NOAA Publication	Alaska	2.2	1.33	25			
Chum							
2016 NOAA Publication	Alaska	2.7	23.2	24			

PCB LEVELS IN SALMON USED FOR DOH ADVISORY*

Human Health Evaluation of **Contaminants in Puget Sound Fish**

Division of Environmental Health Office of Environmental Health Assessments P.O. Box 47825 Olympia, Washington 98504-7825 1-877-485-7316 http://www.doh.wa.gov/fish

DOH 334-104 October 2006

For people with disabilities, this document is available on request in other formats. To submit a request, please call 1-800-525-0127 (TDD/TTY call 711).

Mary C. Selecky Secretary of Health

Joan Hardy, Ph.D. Toxicologist

Gary Palcisko, M.S. Health Assessor

https://www.doh.wa.gov/Portals/1/Docume nts/Pubs/334-104.pdf

Table 3. (cont.) Summary of mercury (ppm, wet weight) and PCBs (ppb, wet weight) measured in four species of rockfish, English sole, Chinook salmon and coho salmon from Puget Sound.

		Mercury		PC	Total CBs (Aroc	lors) ^a	Tot	al PCBs (. Equivale	
	n	Range (ppm)	Mean (ppm)	n	Range (ppb)	Mean (ppb)	n	Range (ppb)	Mean (ppb)
ENGLISH SOLE	577	0.017-0.14	0.060	434	2-462	38.6	169	4-214	46.6
Urban	256	0.023-0.140	0.072	191	6-462	73.6	82	12-214	74.1
Near-urban	81	0.020-0.118	0.053	57	3-76	17.2	27	13-96	36.2
Non-urban	240	0.017-0.130	0.051	186	2-52	9.3	60	4-39	13.7
SALMON									
Chinook									
All of Puget Sound	106	0.051-0.160	0.093	210	11-223	54.0	NA	NA	NA
In-river	78	0.058-0.160	0.096	1/6	11-225	50.2	NA	NA	NA
Marine ^d	28	0.051-0.130	0.082	34	21-212	73.2	NA	NA	NA
Central Sound	22	0.051-0.120	0.074	18	21-170	75.6	NA	NA	NA
South Sound	6	0.092-0.130	0.113	16	24-212	70.6	NA	NA	NA
Coho									
All of Puget Sound	225	0.008-0.110	0.039	221	5-126	31.8	224	16-106	35.5
In-river*	183	0.008-0.110	0.038	175	5-98	31.1	139	17-82	34.6
Marine ^d	32	0.028-0.071	0.051	46	8-126	34.4	42	21-106	42.1
Minter Creek and									
Wallace River	10	0.020-0.043	0.029	NA	NA	NA	43	16-106	32.1
Hatchery									
Central Sound	26	0.028-0.069	0.049	20	8-61	18.3	10	30-59	46.8
South Sound	6	0.045-0.071	0.057	26	18-126	46.8	32	21-106	40.6

Note: Means reflect equal weighting of individual and composite samples.

^a Sum of Aroclors 1248, 1254, and 1260.

^b Approximation of equivalent Aroclor concentration from HPLC data.
 ^c "In-river" refers to nearshore areas near rivers and river mouths from which salmon most likely originated.

d "Marine" refers to offshore areas where the origins of salmon are unknown.

* Based on discussions with Dave McBride from WA State

Department of Health

ADDITIONAL DATA ON PCB LEVELS IN SALMON

Human Health Evaluation of Contaminants in Puget Sound Fish

Division of Environmental Health Office of Environmental Health Assessments P.O. Box 47825 Olympia, Washington 98504-7825 1-877-485-7316 http://www.doh.wa.gov/fish

DOH 334-104 October 2006

For people with disabilities, this document is available on request in other formats. To submit a request, please call 1-800-525-0127 (TDD/TTY call 711).

Mary C. Selecky Secretary of Health

Joan Hardy, Ph.D. Toxicologist

Gary Palcisko, M.S. Health Assessor Table D3. Estimated meals per month for Chinook salmon from Puget Sound, based on contaminant concentrations for each station and chemical.

		Mer	cury		Total PCBs (Aroclors)						
			Mean	Meals/		Mean					
Location	Type	Ν	(ppm)	month	N	(ppb)	Meals/month				
	In-river Fisheries										
Nooksak River	С	18	0.087	9	28	37.9	4				
Skagit River	C and I	18 C	0.100	8	3 I 26 C	40.6	4				
Duwamish River	C and I	18 C	0.102	8	34 I 31 C	57.2	3				

C = Composite sample

I = Individual sample

ADDITIONAL DATA ON PCB LEVELS IN SALMON

Human Health Evaluation of Contaminants in Puget Sound Fish

Division of Environmental Health Office of Environmental Health Assessments P.O. Box 47825 Olympia, Washington 98504-7825 1-877-485-7316 http://www.doh.wa.gov/fish

DOH 334-104 October 2006

For people with disabilities, this document is available on request in other formats. To submit a request, please call 1-800-525-0127 (TDD/TTY call 711).

Mary C. Selecky Secretary of Health

Joan Hardy, Ph.D. Toxicologist

Gary Palcisko, M.S. Health Assessor
 Table D4. Estimated meals per month for coho salmon from Puget Sound based on contaminant concentrations for each station and chemical.

	Mercury Mean Meals/						CBs ors)	cong	Total PCBs (Sum of 15 congeners Aroclor equivalent)		
Location	Туре	N	Mean (ppm)	Meals/ month	N	Mean (ppb)	Meals/ month	N	Mean (ppb)	Meals/ month	
				In-rive:	r Fisheri	es					
Nooksak River	С	18	0.041	20	38	24.7	7	20	26.6	6	
Skagit River	C and I	56C	0.039	21	2 I 26 C	24.0	7	38 C	36.4	4	
Duwamish River	C and I	58 C	0.030	27	1 I 44 C	39.6	4	53 C	33.6	5	

ADDITIONAL DATA ON PCB LEVELS IN SALMON

Final

Public Health Assessment

Lower Duwamish Waterway Seattle, King County, Washington CERCLIS NO. WA0002329803

September 30, 2003

Prepared by

Washington State Department of Health Under Cooperative Agreement with the Agency for Toxic Substances and Disease Registry

Contaminant concentrations used to estimate exposure to contaminants in Duwamish River fish are given below in Table C2.

 Table C2. Contaminant concentrations used to estimate exposure from consumption of fish from the Lower Duwamish Waterway, Seattle, Washington

		rsenic ^a (mg/kg)			dmiun (mg/kg)	n		ordan ug/kg)	ne		PAHs (ug/kg)			DDE (ug/kg)			ercury (ug/kg)	c		al PCI	3s
Fish Species	Mean	95 UCL	n	Mean	95 UCL	n	Mean	95 UCL	n	Mean	95 UCL	n	Mean	95 UCL	n	Mean	95 UCL	n	Mean	95 UCL	n
English sole	10	12	9	0.02	0.05	3	1,1	1.3	9	26	41	6	2.7	5.9	9	54	61	24	267	312	21
Coho	0.8	0.9	18	NA	NA	NA	0.9	1.1	57	42	45	16	8.3	9	57	32	37	16	39	45	45
Chinook	1	1.2	18	NA	NA	NA	1.2	1.3	83	41	44	19	19	22	83	102	124	18	55	64	65
Quillback rockfish	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.04	0.04	1	408	438	8	292	336	5
Red Rock Crab	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	63	88	9	110	152	9
Dungeness Crab ^f	9.9	12.5 ^f	2	0.02	0.02	2	NA	NA	NA	40	40	2	NA	NA	NA	90	110	3	130	177	3
Mussels	0.8	0.9	63	0.43	0.47	63	3.4		27	42	43	62	0.7	0.7	27	11	15	62	29	34	60
Perch 8	1.3	1.4 ^r	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	15	20	9	111	140	9

a = Arsenic concentrations are given as total arsenic. Ten percent of this value was used in dose calculations to represent the amount of inorganic arsenic, to be consistent with EPA's RfD and cancer slope factor, both of which are based on exposure to inorganic arsenic.

b = Sum of Aroclors. The predominant Aroclors detected in Puget Sound fish are Aroclor 1254 and Arolcor-1260

c = Mercury concentrations are given as total mercury. All measured mercury is assumed to be in the methylmercury form for comparison with EPA's RfD for methylmercury. f

= Represents maximum value detected.

g = striped perch

Final

ADDITIONAL DATA ON PCB LEVELS IN SALMON

Public Health Assessment

Lower Duwamish Waterway Seattle, King County, Washington CERCLIS NO. WA0002329803

September 30, 2003

Prepared by

Washington State Department of Health Under Cooperative Agreement with the Agency for Toxic Substances and Disease Registry

 Table 10. Meal limits based on PCB, mercury, and DDE contamination in Lower Duwamish

 Waterway fish, Seattle, Washington.

		d 8 ounce meals month
Fish Species	Developmental ^b	Immune "
English Sole	0.9	0.7
Perch	2.1	1.7
Chinook	3.0	3.7
Coho	5.0	5.2
Red Rock Crab	1.9	1.7
Rockfish ^a	0.6	0.6

a = Rockfish were sampled from Elliot Bay near Harbor Island

b = Based on developmental endpoint of PCBs, mercury, and DDE, assuming a female body weight of 60 kg

c = Based on the Immune endpoint of PCBs, assuming an adult body weight of 70 kg

NOAA Technical Memorandum NMFS-NWFSC-135

Exposure to a Mixture of Toxic Chemicals: Implications for the Health of Endangered Southern Resident Killer Whales

doi:10.7289/V5/TM-NWFSC-135

Teresa M. Mongillo, Gina M. Ylitalo,¹ Linda D. Rhodes,¹ Sandie M. O'Neill,¹² Dawn P. Noren,³ and M. Bradley Hanson³

National Marine Fisheries Service West Coast Region Protected Resources Division 7600 Sand Point Way Northeast Seattle, Washington 98115

¹Northwest Fisheries Science Center Environmental and Fisheries Science Division 2725 Montlake Boulevard East Seattle, Washington 98112

²Washington Department of Fish and Wildlife 600 Capitol Way North, MS 43150 Olympia, Washington 98501

^aNorthwest Fisheries Science Center Conservation Biology Division 2725 Montlake Boulevard East Seattle, Washington 98112

November 2016

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northwest Fisheries Science Center https://www.nwfsc.noaa.gov/index.cfm

https://www.nwfsc.noaa.gov/assets/2 5/8314 11302016 111957 TechMem o135.pdf Table 2. Percent lipid and POP concentrations (ng/g wet weight) of adult and subadult Pacific salmon sampled in terminal areas. Terminal areas include coastal marine waters and river mouths through which fish migrate en route to their natal streams. NR = not reported.

					Tissue	Lipids				
Species		Subregion	Population	n	Analyzed	(%)	PCBs	PBDEs	DDTs	Reference(s)
Chinook	Alaska	unknown	unknown	2	muscle, no skin	NR	5.6	0.95	NR	4
salmon	Alaska	Aleutian Islands	unknown		muscle, skin	7.6	5.0	0.71	22	14, 15ª
	Alaska	SE Alaska/Gulf of	unknown	35	muscle, no skin	9.7	11	0.53	7.1	21
		Alaska/Bering Sea								
	Alaska	SE Alaska	unknown	3	muscle, skin	NR	8.0	0.50	NR	5ª, 6ª
	Alaska	South Central	River	10	muscle, no skin	NR	9.1	NR	9.8	13
		Alaskan Chinook sa	lmon average			8.7	7.7	0.67	13.0	
	British Columbia	BC North Coast	Skeena	30	whole body	NR	7.3	0.08	7.3	11
	British Columbia	Fraser River	Thompson	6	muscle, no skin	10	9.1	NR	1.5	1
	British Columbia	Fraser River		13	whole body	NR	9.4	0.80	6.6	11
	British Columbia	Fraser River	Thompson	7	muscle, no skin	12	8.6	1.54	7.7	17 ^b
	British Columbia	Fraser River	Shuswap	2	muscle, no skin	3.0	9.8	NR	5.5	17 ^b
	British Columbia	Fraser River	Harrison	6	muscle, no skin	5.4	47	17.7	4.3	1
		Fraser River Chinoc	ok salmon average (excl	uding	g Harrison)	8.3	10	1.67	5.7	
		British Columbia C	hinook salmon average			7.6	15	4.87	5.5	
	Washington	Puget Sound	Nooksack River	28	muscle, no skin	3.5	37	NR	NR	12
	Washington	Puget Sound	Skagit River	29	muscle, no skin	4.8	40	NR	NR	12
— Г	Washington	Puget Sound	Duwamish River	65	muscle, no skin	7.3	56	NR	NR	12
	washington	Puget Sound	Nisqually River	20	muscle, no skin	3.8	41	NR	NR	12
_	Washington	Puget Sound	Deschutes River	34	muscle, no skin	1.7	59	NR	NR	12
	Washington	Puget Sound	Puget Sound mixed	28	muscle, no skin	4.8	76	NR	NR	12
	Washington	Puget Sound	Duwamish River	3	whole body	6.4	35	6.43	18.3	1
	Washington	Puget Sound	Deschutes River	4	whole body	4.3	56	NR	NR	1
	Washington	Puget Sound	Deschutes River	10	muscle, no skin	1.0	49	NR	NR	8
	Washington	Puget Sound	Issaquah Creek		muscle, no skin	0.6	49	NR	NR	8
	Washington	Puget Sound	Puget Sound mixed	36	whole body	NR	43	18.9	29.1	11

^a Value estimated from figure.

^b Value estimated from reported lipid weight.

NOAA Technical Memorandum NMFS-NWFSC-135

Exposure to a Mixture

of Toxic Chemicals: Implications for the Health of Endangered Southern Resident Killer Whales Table 2 continued. Percent lipid and POP concentrations (ng/g wet weight) of adult and subadult Pacific salmon sampled in terminal areas. Terminal areas include coastal marine waters and river mouths through which fish migrate en route to their natal streams. NR = not reported.

i Endangered											
ales	Species	Region	Subregion	Population	n	Tissue Analyzed	Lipids (%)	PCBs	PBDEs	DDTs	Reference(s)
		· · · · ·									
D. Rhodes, ¹											
1. Bradley Hanson ³	Coho	Alaska	unknown	unknown	2	muscle, no skin	NR	1.6	0.32	NR	4
	salmon	Alaska	Kodiak	unknown	3	muscle, skin	NR	4.0	0.10	NR	5ª, 6ª
		Alaska	SE Alaska/	unknown	14	muscle, no skin	2.9	2.0	0.19	1.5	21
			Gulf of Alaska								
		Alaska	SE Alaska	unknown	3	muscle, skin	NR	4.0	0.10	NR	5a, 6a
		Alaskan coho sa	lmon average				2.9	2.9	0.18	1.5	
			0								
	Caba	Duitish Columbia			2		ND	6.0	0.20	ND	F8 (8
	Coho	British Columbia		unknown	3	muscle, skin	NR	6.0	0.30	NR	5ª, 6ª
	salmon	Washington	Puget Sound	unknown	32	muscle, no skin	3.1	35	NR	NR	10
		Washington	Puget Sound	Puget Sound mixed	125	muscle, no skin	3.1	27	NR	NR	10
		Washington	Puget Sound	Puget Sound mixed	266	muscle, no skin	3.3	NR	NR	11.7	20
		Washington cohe	o salmon average				3.2	31	NR	11.7	
		Oregon	Columbia River	Umatilla River	3	muscle, skin	2.5	35	NR	41.0	18
		Coho salmon ave	erage				3.0	14	0.20	18.1	

doi:10.7289/V5/TM-NWFSC-135

Teresa M. Mongillo, Gina M. Ylitalo,¹ Linda D. Rhodes,¹ Sandie M. O'Neill,¹² Dawn P. Noren,³ and M. Bradley Hanson³

National Marine Fisheries Service West Coast Region Protected Resources Division 7600 Sand Point Way Northeast Seattle, Washington 98115

¹Northwest Fisheries Science Center Environmental and Fisheries Science Division 2725 Montlake Boulevard East Seattle, Washington 98112

²Washington Department of Fish and Wildlife 600 Capitol Way North, MS 43150 Olympia, Washington 98501

^aNorthwest Fisheries Science Center Conservation Biology Division 2725 Montlake Boulevard East Seattle, Washington 98112

November 2016

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Science Center Northwest Fisheries Science Center https://www.nwfsc.noaa.gov/index.cfm

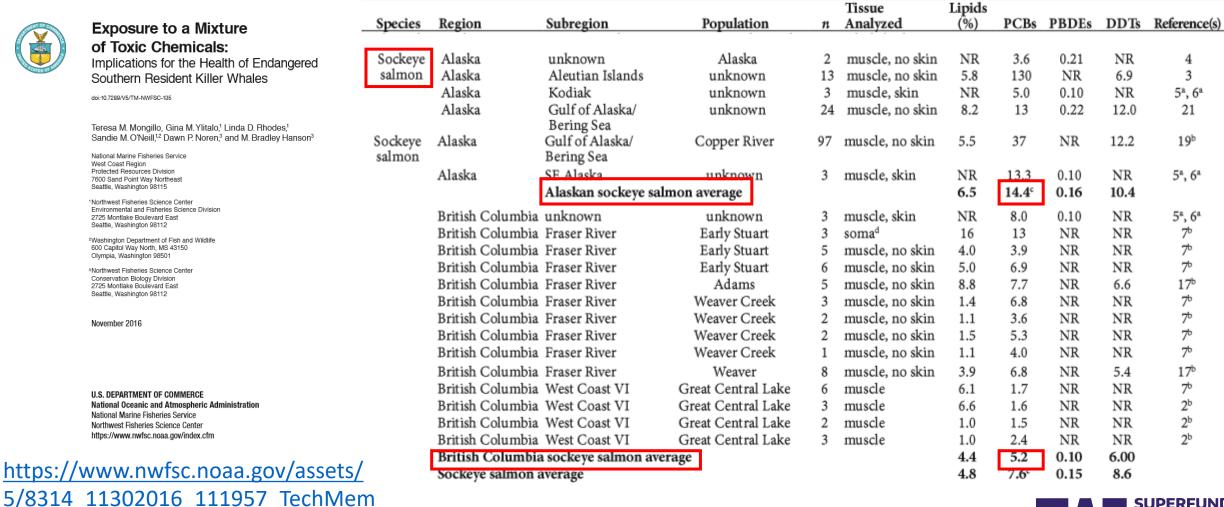

https://www.nwfsc.noaa.gov/assets/2 5/8314 11302016 111957 TechMem o135.pdf

Table 2 continued. Percent lipid and POP concentrations (ng/g wet weight) of adult and subadult Pacific salmon sampled in terminal areas. Terminal areas include coastal marine waters and river mouths through which fish migrate en route to their natal streams. NR = not reported.

NOAA Technical Memorandum NMFS-NWFSC-135

o135.pdf

NOAA Technical Memorandum NMFS-NWFSC-135

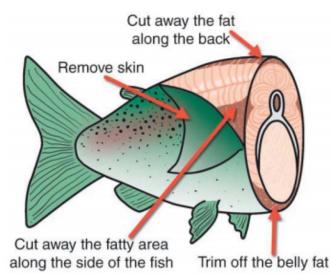
Exposure to a Mixture

of Toxic Chemicals: Implications for the Health of Endangered Southern Resident Kille

Table 2 continued. Percent lipid and POP concentrations (ng/g wet weight) of adult and subadult Pacific salmon sampled in terminal areas. Terminal areas include coastal marine waters and river mouths through which fish migrate en route to their natal streams. NR = not reported.

Southern Resident Killer Whales	Species	Region	Subregion	Population	n	Tissue Analyzed	Lipids (%)	PCBs	PBDEs	DDTs	Reference(s)
Teresa M. Mongillo, Gina M. Ylitalo, ¹ Linda D. Rhodes, ¹ Sandie M. O'Neill, ¹² Dawn P. Noren, ³ and M. Bradley Hanson ³ National Marine Fisheries Service West Coast Region Protected Resources Division 7600 Sand Point Way Northeast Seattle, Washington 98115 'Northwest Fisheries Science Center Environmental and Fisheries Science Division 2725 Montake Boulevard East Seattle, Washington 98112	Pink salmon	Alaska Alaska Alaska Alaska Alaskan pink s a	Kodiak northern Alaska SE Alaska/GOA SE Alaska Imon average	unknown unknown unknown unknown	3 7 12 3	muscle, skin canned muscle, no skin muscle, skin	NR 6.3 3.5 NR 4.9	3.0 2.6 1.3 2.0 2.2	0.10 NR 0.22 0.10 0.14	NR 1.8 0.6 NR 1.2	5ª, 6ª 22 21 5ª, 6ª
[≥] Washington Department of Fish and Wildlife 600 Capitol Way North, MS 43150 Olympia, Washington 98501 ªNorthwest Fisheries Science Center		British Columbi Pink salmon a ve		unknown	3	muscle, skin	NR 4.9	3.0 2.4	0.30 0.18	NR 1.2	5ª, 6ª
Conservation Biology Division 2725 Montlake Boulevard East Seattle, Washington 98112 November 2016	Chum salmon	Alaska Alaska Alaska	Kodiak SE Alaska Bering Sea	unknown unknown unknown	3 3 18	muscle, skin muscle, skin muscle, no skin	NR NR 4.8	2.0 3.0 3.2	0.10 0.10 0.16	NR NR 1.9	5ª, 6ª 5ª, 6ª 21
		Alaskan chum s British Columbi Chum salmon a	a unknown	unknown	3	muscle, skin	4.8 NR 4.8	2.7 2.0 2.6	0.12 0.20 0.14	1.9 NR 1.9	5ª, 6ª

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northwest Fisheries Science Center https://www.nwfsc.noaa.gov/index.cfm


https://www.nwfsc.noaa.gov/assets/2 5/8314 11302016 111957 TechMem o135.pdf

DOH Fish Preparation Recommendations

The following recommendations can reduce, by up to 50 percent, PCBs and other contaminants that collect in the fat of fish. Mercury is stored in the muscle (fillet) and cannot be reduced by preparing this way.

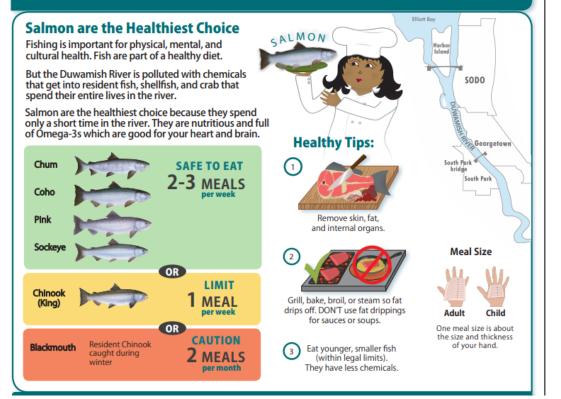
- When cleaning salmon remove the skin, fat, and internal organs before cooking.
- Grill, bake, or broil fish so that fat drips off while cooking.
- Do not use the fat drippings for sauces or gravies.

Calculating how much fish is "safe" to eat: Other considerations

How fish is prepared and cooked can affect how much of the PCBs are still in the fish when you eat it.

The fish consumption calculations account for removing the fatty parts of the fish (skin, belly, head, and organs), but do not account for how the fish is cooked.

PCBs can be further reduced by grilling, baking or broiling in a way that lets the fat drip off while cooking, vs boiling, frying, or cooking the fish whole.



Calculating how much fish is "safe" to eat: Other considerations

The American Heart Association recommends eating fish (particularly fatty fish) at least two times (two servings) a week. Each serving is 3.5 ounce cooked, or about ³/₄ cup of flaked fish. Fatty fish like **salmon**, **mackerel**, **herring**, **lake trout**, **sardines and albacore tuna** are high in omega-3 fatty acids.

Fishing for the Safest Seafood from the Duwamish River? Eat Salmon.

Recommended consumption levels are adjusted to reflect the lower levels of PCBs that are expected to be in salmon prepared according to the "Healthy Tips" provided in the advisory.

Thus, the advisory for the number of meals per week is higher than what would be calculated based solely on PCB concentrations in skinless raw fish tissue to promote the consumption of fish.

NOTE: 8 meals/month is considered "Unrestricted (healthy choice)" on DOH website

https://www.doh.wa.gov/DataandStatisticalReports/Health DataVisualization/fishadvisory

Thanks to the colleagues below for their comments on the presentation

Dave McBride	Washington State Department of Health
--------------	---------------------------------------

- Arthur Wendel Region 10 Agency for Toxic Substances and Disease Registry
- Sandra O'Neill Washington State Department of Fish and Wildlife
- Elly Hale Region 10 Environmental Protection Agency
- Lon Kissinger Region 10 Environmental Protection Agency
- Piper Peterson Region 10 Environmental Protection Agency

