ENV H 433: Environmental & Occupational Sampling and Analysis - Microbial Contaminants

Winter Quarter, 2020 REVISED
MWF 8:30-10:20 AM Room T-369

INSTRUCTOR: Marilyn C. Roberts
Professor
Department of Environmental and Occupational Health Sciences
Office: Roosevelt 2340
Phone (206) 543-8001
E-mail: marilynr@uw.edu

OFFICE HOURS: By Appointment

TEACHING ASSISTANTS:
Elisabeth Burnor elisann@uw.edu
Sarah Philo sphilo@uw.edu

COURSE DESCRIPTION
This course will review the sampling and analysis of microbiological contaminants in water, air, and on surfaces. Topics covered will include legal considerations, sampling and experimental design, routes of exposure, sources of exposure, standard methods, QA/QC, and data management. This course will be of use for public health professionals, microbiologists, civil and environmental engineers, and environmental scientists.

COURSE OBJECTIVES
At the conclusion of this class, students should be able to:

- Recognize the various microbial contaminants in environmental and occupational settings
- Distinguish between the methods for sample collection and processing of microbial contaminants in different environmental and occupational exposure situations
- Categorize the methods for detection of microbial contaminants for different environmental and occupational exposure situations
- Formulate an appropriate experimental design for assessing environmental and occupational exposures to microbial contaminants
- Describe the advantages and disadvantages of using indicator organisms in environmental and occupational exposure assessment
- Identify the various indicator organisms in different environmental and occupational exposure situations
- Explain basic chemical and bio-safety laboratory precautions
- Describe quality assurance and quality control (QA/QC) procedures used in conducting environmental microbiology research
- Analyze, report, and manage scientific data related to environmental and occupational health sciences
- Recognize the importance of the legal and regulatory framework related to environmental and occupational exposures to microbial contaminants
- Critically evaluate papers in the scientific literature and identify strengths and weaknesses of the science article
TEXTS AND REFERENCES
There is no required text for this course. Assigned readings and course materials will be available on the course webpage. The following texts are recommended references for this course:

- Multiple-Tube Fermentation Technique (9221)/Total Coliforms

- EPA Method 1604: Total Coliforms and E. coli in Water by Membrane Filtration Using a Simultaneous Detection Technique (MI Medium)
 https://nepis.epa.gov/Exe/ZyPDF.cgi/P1002D57.PDF?Dockey=P1002D57.PDF

- Difco™ & BBL™ Manual – online

- EPA 2012 Recreational Water Quality Criteria Fact Sheet

COURSE DESIGN
The course will begin with lectures, which will be covered in an exam Jan 17, 2020. Then students will perform six laboratory experiments. Class will be held in T-369, MWF between 8:30-10:20am. Students must be in the classroom and ready to go before class starts at 8:30 AM. Each week, starting the week of January 22, students will look up research papers that use the method featured in that week’s laboratory exercise. The paper must be written in English and published within the last 5 years. The paper needs to be posted to the Canvas site, and each student will briefly present their papers on Monday, Wednesday, or Friday morning. Major points should be written out, not read from the paper [See Below].

GRADING
First Exam Week 2 (25%): Students will be examined for their mastery of the material presented in the introductory lectures during weeks 1 and 2. The exam will consist of approximately 20 questions and the format will be multiple choice, short answer and true/false. Exam will be closed book.

Weekly Laboratory Reports (20%): Questions will be provided that need to be answered at the end of each week of class. This will be turned in weekly to the Canvas site. In general, the reports will be due before class on Monday.

Participation in class (20%): Answering questions in class and general participation will be noted as well as giving critical evaluations on papers in the scientific literature with identification of its strengths and weaknesses. Please note that each student will present 1 paper each week for 6 weeks. In addition, a minimum of 8 questions by each student about another student’s presentation is required to receive 100% for participation. Papers need to be selected on Canvas by noon on the Thursday the week before the presentation. The first lab is January 22, meaning the paper for presentation needs to be on Canvas by noon January 16, 2020. Each student needs to select a unique paper that is written in English and peer reviewed. It must use the method used the week of lab and must be on bacteria.

Final Exam End of Quarter (35%): Closed book in class. Given the last week of regular class [March 11, 2020].

IMPORTANT CLASS POLICIES
If you have your cell phone out, you will be asked to leave class and will lose points.

If you are late to class you will lose points for the day. If you are chronically late to class or have your cell phone out 3 times, you will not be able to pass the course. Missing the bus is not a valid excuse, nor is not making it back to Seattle before the start of class by 8:30 AM January 6, 2020.

If you miss the class for illness, you must contact Dr. Roberts or one of the TA’s before class to let them know.

You cannot make up a class that you miss because it is a laboratory class.

After the first four classes that are lecture, students are not allowed to use computers, phones or tablets. If computers or tablets are seen, the student will lose points for the day, which can lead to not passing this required class.

DISABILITY RESOURCES FOR STUDENTS (DRS)

Disability Resources for Students (DRS) offers resources and coordinates reasonable accommodations for students with disabilities. Reasonable accommodations are established through an interactive process between you, your instructor(s) and DRS. If you have not yet established services through DRS, but have a temporary or permanent disability that requires accommodations (this can include but not limited to; mental health, attention-related, learning, vision, hearing, physical or health impacts), you are welcome to contact DRS at 206-543-8924 or uwdrs@uw.edu or disability@uw.edu Requests for accommodations or services must be arranged in advance.

COURSE SCHEDULE

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 6</td>
<td>Introduction/overview</td>
</tr>
<tr>
<td>Jan 8</td>
<td>Lab Safety</td>
</tr>
<tr>
<td>Jan 10</td>
<td>Sampling & Experimental Design</td>
</tr>
<tr>
<td>Jan 13</td>
<td>Delayed start – class canceled</td>
</tr>
<tr>
<td>Jan 15</td>
<td>Delayed start – class canceled</td>
</tr>
<tr>
<td>Jan 17</td>
<td>QA/QC and Regulations</td>
</tr>
<tr>
<td></td>
<td>Jan 20</td>
</tr>
<tr>
<td></td>
<td>HOLIDAY</td>
</tr>
<tr>
<td>Jan 22</td>
<td>Exam – Closed Book/Notes</td>
</tr>
<tr>
<td>Jan 24</td>
<td>Laboratory preparation</td>
</tr>
<tr>
<td>Jan 27, 29, 31</td>
<td>MPN multiple tube fermentation, Colilert</td>
</tr>
<tr>
<td>Feb 3, 5, 7</td>
<td>IDEXX and membrane filtration to detect enterococci/E. coli</td>
</tr>
<tr>
<td>Feb 10, 12, 14</td>
<td>Surface sampling for S. aureus and methicillin-resistant S. aureus (MRSA)</td>
</tr>
<tr>
<td></td>
<td>Feb 17</td>
</tr>
<tr>
<td></td>
<td>HOLIDAY</td>
</tr>
<tr>
<td></td>
<td>Feb 19, 21, 24 Surface sampling for vancomycin resistant enterococci</td>
</tr>
<tr>
<td></td>
<td>Feb 26, 28, March 2 Salmonella in chicken</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>March 4, 6</td>
<td>Airborne Microbial contaminants</td>
</tr>
<tr>
<td>March 9</td>
<td>Turn in homework, talk about papers detecting airborne contaminants</td>
</tr>
<tr>
<td></td>
<td>and any other presentations that were missed</td>
</tr>
<tr>
<td></td>
<td>Review session with TAs</td>
</tr>
<tr>
<td>March 11</td>
<td>Final exam Closed Book/Notes</td>
</tr>
</tbody>
</table>

LABORATORY POLICIES

- Everyone must have laboratory coat, which will be provided.
- Everyone needs a bound laboratory notebook with lines by Jan 10, 2020. This is not provided by UW, but students must bring their own.
- No food, drink, gum, computers or tablets allowed in the lab spaces before or during class after Jan 15, 2020.
- No phones ever allowed in the lab spaces before or during class.
- No open-toe shoes and no shorts or short skirts (scrub pants are available for purchase). You may change shoes in the hallway before entering the lab space.
- Let TAs or Dr. Roberts know ahead of time if you cannot attend a session. There are no make-up sessions. Excuses for missing class are if student is very sick or at a scientific meeting.
- **Arrive on time and be ready to start right at 8:30 AM. This is critical. Walking in at 8:30 AM is not acceptable.**
- Turn in assignments on time. Late assignments will be marked down.
- Come to class prepared (keep up with reading).
- Be courteous (no newspapers, cell phones should be turned off, PDAs, no computers)
- All backpacks and personal items will be stored underneath the desks. **Do not leave in the hallway since there have been problems with items going missing.**
- Once you know what you are doing for the lab, you can start when you get in.
- You should be able to finish lab in the 2-hour time-period if you are prepared.
- Protocols for the week should be placed in your laboratory notebook before class.
- **ASK QUESTIONS!**