Mobile ObserVations of Ultrafine Particles (MOV-UP)

Austin, Elena; Xiang, Jianbang; Gould, Timothy; Yun, Sukyong; Shirai, Jeff; Hardie, David; Yost, Michael; Larson, Timothy V.; Seto, Edmund

University of Washington, Seattle

Outline

Study Objectives

- Study the implications of air traffic at Sea-Tac
- Assess the concentrations of ultrafine particulate matter (UFP) in areas surrounding and directly impacted by air traffic
- Distinguish between and compare concentrations of aircraftrelated and other sources of UFP
- Coordinate with local governments, and share results and solicit feedback from community

Recent MOV-UP Presentations

- FAA Aviation Emissions Characterization Roadmap Meeting (May 24, 2019)
- Airport Impact Study Meeting, Seatac City Hall (May 20, 2019)
- Federal Way City Council, Land Use & Transportation Meeting (Apr 1, 2019)
- Seattle King County Board of Health (Feb 21, 2019)
- Highline Forum (Jan 23, 2019)
- Study Advisory Board Meeting (Aug 15, 2018)
- NW-AIRPACT (June 12, 2018)
- Highline Forum (Mar 28, 2018)
- Study Advisory Board Meeting (Jan 5, 2018)

ULTRAFINE PARTICLES<100 nanometers in diameter</p>

- FINE PARTICLES <2.5 microns in diameter</p>

HUMAN HAIR 50-70 microns in diameter

Ultrafine Particles (UFPs)

Ultrafine Particles unregulated but potentially important

Health Effects more uncertain compared to $PM_{2.5}$, but a growing body of evidence

Diesel Engines emit ultrafine particles resulting in elevated levels near major roadways (within 200 meters downwind)

Jet aircraft directly emit "ultra-ultra fine" particles (< 30 nanometers)

Health Effects Studies of Ultrafine Particles

- WA Department of Health currently conducting a detailed literature review of the health effects associated with ultrafine particles.
- The current UW MOV-UP project is not a study of health effects. It is air quality measurement and source characterization study.

• One study that explicitly considered exposures to aircraft-related ultrafine PM

Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma

Rima Habre^{a,*}, Hui Zhou^a, Sandrah P. Eckel^b, Temuulen Enebish^a, Scott Fruin^a, Theresa Bastain^a, Edward Rappaport^a, Frank Gilliland^a

^aDivision of Brvironmental Health, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
^bDivision of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

- Randomized crossover study of 22 non-smoking adults with mild to moderate asthma
- 2-hr scripted, mild walking activity both inside and outside of the high LAX UFP impact zone (avg. difference ~30,000 /cc)
- Mean particle size at LAX impact zone was 29 nm
- *"We found significant increases in markers of systemic inflammation associated with 'Airport UFPs' and 'Traffic' exposure*

Mobile Monitoring Platform

Parameter	Instrument
Mobile and Fixed sampling:	
Particle number concentration (35 nm – 1 μ m)	P-Trak 8525, w/ diffusion screens
Particle number concentration (20 nm – 1 μ m)	P-Trak 8525
Particle number concentration (10 nm – 1 μ m)	Condensation Particle Counter 3007
Black Carbon PM	Micro-Aethalometer AE51
CO2	LI-850 Gas Analyzer
Temperature & Humidity	Hobo T, RH datalogger
Position & Time tracking	GPS Receiver DG-500
Fixed Location sampling:	
Particle size distribution, 13 bins	NanoScan 3910

Study Region: Mobile Transects and Fixed Monitoring Site Locations

Fixed Monitoring Results

Fixed Monitoring Sites

	SeaTac Center N of Runway	Maywood S of Runway	10 th & Weller Near Road	Sand Point Background
Spring 2018	-	10	8	23
Summer 2018	11	22	-	12
Autumn 2018	7	7	-	-
Winter 2018-19	17	15	-	-

Fixed Sites

- SeaTac Community Center
- Maywood School Building
- የ Near Roadway Site
- Background

Traffic Related Pollutants

Smaller Sized Particles Near SeaTac Associated with Jet Landings

11.5 nm particles (% of UF)

65 nm particles (% of UF)

Conditional Probability Plot

These plots show the probability that a given *wind direction* and *wind speed* is associated with a high concentration of a) 11.5 nm particles and b) 65 nm particles

Mobile Monitoring Results

Mobile Monitoring

	Sampling	Second	Start	End	Temp (F)	RH	South Flow
	Day	Car (%)	Hour	Hour			Operation
Winter	21 days	62%	14:00	16:30	51F	62%	59%
Spring	14 days	71%	11:00	16:30	65F	50%	52%
Summer	16 days	81%	11:00	17:00	73F	47%	75%
Fall	12 days	83%	11:00	17:00	54F	78%	91%

Wind roses indicate the speed and direction the wind is blowing "from".

Traffic Related Pollutants Spatial Distribution

Total Particle Number*

Percentile (%)

Black Carbon

* Total Particle Number refers to particles with 10 - 1,000 nm diameter

Major Roadways vs Transects

Proportion of small 10-20 nm particles enhanced near airport

Transects

Proportion of small 10-20 nm particles NOT enhanced on roadways

Principal Component Analysis (PCA)

- **Goal**: Combining particle size and other pollutant characteristics collected from mobile monitoring to characterize the source of pollutant
- **Method**: Perform a PCA with varimax-rotation to identify features or "fingerprints" that reflect pollutant source.
- Result: We can plot the contributions from each feature on a map

"Ultra-UF" Feature

- POSITIVELY correlated with ultra-UF particles
- NEGATIVELY correlated with Black Carbon
- Median diameter from Nanoscan is approximately 15 nm

Roadway Feature

- POSITIVELY correlated with Black Carbon and Total Particle Number Concentration
- Median diameter from Nanoscan is approximately 30 nm

"Ultra-UFP" tracks landing direction

Landing from the SOUTH

"Roadway" is invariant to landing direction

Landing from the NORTH

Landing from the SOUTH

Summary

- The impacts from traffic and aircraft UFP emissions can be separated into sourcerelated features using a combination of mobile monitoring and standard statistical methods
- There are key differences in the particle size distribution and the black carbon concentration for roadway and aircraft features
- Findings will be presented and discussed with Study Advisory Board this summer
- Final results by December 2019

MOV-UP Project Website <u>https://deohs.washington.edu/mov-up</u>

New Beacon Hill Study for City of Seattle (Start date 5/15/19)

- Select "community" sites in Beacon Hill for ultrafine particle (UFP) and noise sampling.
- Operate one community site for up to several weeks before moving to the next one
- Sample at up to five community sites
- Set up an "anchor site" that we know is impacted by aircraft UFP and noise.
- Run both the community and the anchor site simultaneously so that we can make comparisons for different flight characteristics (traffic, time of day, etc.)

Request from Mayor's Office & City Council Federal Way (May 2019)

- Asks UW MOV-UP Research Team to conduct a new study that would expand monitoring in three ways:
- 1. Vertical measurements of UFP (e.g., by using drones)
- 2. Design a network of UFP monitors that would include important sites for the community such as parks, schools, and social justice impact areas
- 3. Include a site not affected by air traffic for comparison of UFP levels.
- We do not currently have funding for this work.