Mobile ObserVations of Ultrafine Particles (MOV-UP) Advisory
January 23, 2019
Highline Forum

Elena Austin, Tim Gould, Jeff Shirai, Michael Yost, Edmund Seto, Tim Larson
Outline

1. Current Monitoring Status
2. Background literature updates
3. Preliminary Data Analysis
4. Discussion
5. Questions
WA State Provisio

• Study the implications of air traffic at Sea-Tac

• Assess the concentrations of ultrafine particulate matter (UFP) in areas surrounding and directly impacted by air traffic

• Distinguish between and compare concentrations of aircraft-related and other sources of UFP

• Coordinate with local governments, and share results and solicit feedback from community

• Produce study report by December 1, 2019
Randomized crossover study of 22 non-smoking adults with mild to moderate asthma

2-hr scripted, mild walking activity both inside and outside of the high LAX UFP impact zone (avg. difference ~30,000 /cc)

Mean particle size at LAX impact zone was 29 nm

“We found significant increases in markers of systemic inflammation associated with ‘Airport UFPs’ (IL-6) and ‘Traffic’ (sTNFrII) exposure and a significant decrease in FEV1 associated with measured PM and BC and modeled ‘Traffic’ exposure. The robust IL-6 effects we found with the ‘Airport UFPs’ source, which would have been masked by considering PN alone…”
MOVUP
Monitoring Locations

Mobile Monitoring Transects + Stationary Sites

4 stationary sites
Data collection as of 2018

<table>
<thead>
<tr>
<th>Season</th>
<th>Mobile monitoring</th>
<th>Airport fixed sites</th>
<th>Near highway fixed sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter 2018</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring 2018</td>
<td>14</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Summer 2018</td>
<td>16</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Autumn 2018</td>
<td>12</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total finished</td>
<td>58</td>
<td>32</td>
<td>8</td>
</tr>
</tbody>
</table>

- Mobile monitoring typically occurs between 12 PM and 5 PM
- Typically monitoring consists of 2 concurrent cars (N and S of the airport)
- Another round of Mobile and Fixed site monitor was recently completed in January 2019.
Fixed Site Monitoring Status

Background Site

<table>
<thead>
<tr>
<th>Fixed Site Monitoring</th>
<th>May 4th - May 11th</th>
<th>June 4th - June 13th</th>
<th>July 13th - July 16th</th>
<th>July 27th - Aug 1st</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th & Weller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maywood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeaTac Community Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOAA- Sand Point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instruments used in mobile and fixed location sampling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile and Fixed sampling:</td>
<td></td>
</tr>
<tr>
<td>Particle number concentration (35 nm – 1 µm)</td>
<td>P-Trak 8525, w/ diffusion screens</td>
</tr>
<tr>
<td>Particle number concentration (20 nm – 1 µm)</td>
<td>P-Trak 8525</td>
</tr>
<tr>
<td>Particle number concentration (10 nm – 1 µm)</td>
<td>Condensation Particle Counter 3007</td>
</tr>
<tr>
<td>Black Carbon PM</td>
<td>Micro-Aethalometer AE51</td>
</tr>
<tr>
<td>CO2</td>
<td>LI-850 Gas Analyzer</td>
</tr>
<tr>
<td>Temperature & Humidity</td>
<td>Hobo T, RH datalogger</td>
</tr>
<tr>
<td>Position & Time tracking</td>
<td>GPS Receiver DG-500</td>
</tr>
<tr>
<td>Fixed Location sampling:</td>
<td></td>
</tr>
<tr>
<td>Particle size distribution, 13 bins</td>
<td>NanoScan 3910</td>
</tr>
</tbody>
</table>
MOV-UP Study
Mobile Observations of Ultrafine Particles (MOV-UP) Study
Area-weighted number concentration equivalent to ~ half the freeways in LA!

10^3/cc

Particle size between ~10 and 30 nm diameter are present at high concentrations at ground level

Hudda et al, ES&T 2014
Local Background UFP (Hudda 2014 Method)

Wind Rose (Nov 21)

![Wind Rose Diagram]

Plume Shifting

1st Drive

2nd Drive

3rd Drive (146th only)
PRELIMINARY RESULTS
<table>
<thead>
<tr>
<th>Date</th>
<th>Mean Temperature (F)</th>
<th>Predominant Wind Direction</th>
<th>Landing Direction (Field Notes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-Feb-18</td>
<td>53</td>
<td>South-east</td>
<td>N</td>
</tr>
<tr>
<td>8-Feb-18</td>
<td>52</td>
<td>South-west</td>
<td>N</td>
</tr>
<tr>
<td>9-Feb-18</td>
<td>48</td>
<td>South-west</td>
<td>N</td>
</tr>
<tr>
<td>12-Feb-18</td>
<td>44</td>
<td>North-west</td>
<td>S</td>
</tr>
<tr>
<td>13-Feb-18</td>
<td>46</td>
<td>South</td>
<td>N</td>
</tr>
<tr>
<td>14-Feb-18</td>
<td>42</td>
<td>South</td>
<td>N then S</td>
</tr>
<tr>
<td>15-Feb-18</td>
<td>43</td>
<td>South-west</td>
<td>N</td>
</tr>
<tr>
<td>16-Feb-18</td>
<td>46</td>
<td>South</td>
<td>N</td>
</tr>
<tr>
<td>7-Mar-18</td>
<td>48</td>
<td>West</td>
<td>S</td>
</tr>
<tr>
<td>8-Mar-18</td>
<td>50</td>
<td>South</td>
<td>N</td>
</tr>
<tr>
<td>9-Mar-18</td>
<td>49</td>
<td>South-west</td>
<td>N</td>
</tr>
<tr>
<td>12-Mar-18</td>
<td>71</td>
<td>East</td>
<td>S then N</td>
</tr>
<tr>
<td>13-Mar-18</td>
<td>51</td>
<td>South-west</td>
<td>N</td>
</tr>
<tr>
<td>14-Mar-18</td>
<td>50</td>
<td>South-west</td>
<td>N</td>
</tr>
<tr>
<td>15-Mar-18</td>
<td>54</td>
<td>West</td>
<td>S</td>
</tr>
<tr>
<td>16-Mar-18</td>
<td>54</td>
<td>South-west</td>
<td>S</td>
</tr>
<tr>
<td>18-Apr-18</td>
<td>55</td>
<td>South-west</td>
<td>S</td>
</tr>
<tr>
<td>19-Apr-18</td>
<td>60</td>
<td>West</td>
<td>S</td>
</tr>
<tr>
<td>20-Apr-18</td>
<td>59</td>
<td>South-west</td>
<td>N</td>
</tr>
<tr>
<td>23-Apr-18</td>
<td>66</td>
<td>North-west</td>
<td>S</td>
</tr>
<tr>
<td>24-Apr-18</td>
<td>74</td>
<td>West</td>
<td>S</td>
</tr>
<tr>
<td>25-Apr-18</td>
<td>69</td>
<td>North-west</td>
<td>S</td>
</tr>
<tr>
<td>26-Apr-18</td>
<td>76</td>
<td>North-west</td>
<td>S</td>
</tr>
<tr>
<td>27-Apr-18</td>
<td>55</td>
<td>South-west</td>
<td>N</td>
</tr>
</tbody>
</table>
Measurements
Primary Roadway (I-5) vs Transect
Winter - Spring Data

[Box plots showing Black Carbon (ug/m³) and CO2 Concentration (ppm) for Primary and Transect for I-5]
Measurements
Primary Roadway (I-5) vs Transect
Winter - Spring Data

"Total" > 10 nm

Proportion of "Small" 10-20 nm
PRELIMINARY SPATIAL DISTRIBUTION OF POLLUTANTS
Black Carbon Spatial Distribution

Winter - Spring Data
Carbon Dioxide Spatial Distribution

Winter - Spring Data
Particle Number Concentration ("Total" >10 nm) Spatial Distribution

Winter - Spring Data
Proportion of small 10-20 nm particles
Transects vs Primary Road (I-5)

Proportion of Small Particles (10-20 nm)

Winter – Spring Data
Proportion of small 10-20 nm particles

By Wind Direction

Wind from the SOUTH

Wind from the NORTH

Winter – Spring Data
How can we make better use of the multi-pollutant data we’ve collected?

Principal Component Analysis (PCA)

Data reduction technique that allows for capturing the variance in the data in a smaller set of variables. The goal is to summarize the correlations among the observed variables with a smaller set of linear combinations.
Principal Component Analysis (PCA)

• **Hypothesis**: Using particle size distribution measures collected during mobile monitoring we can identify correlations that correspond to roadway and Ultra-Ultrafine features.

• **Method**: Perform a PCA with varimax-rotation. Varimax rotation searches for a rotation (i.e., a linear combination) of the original factors such that the variance of the loadings is maximized.
Preliminary PCA Results
Winter – Spring Data

Roadway (Variance Accounted 38%)

- [PN 10-20 nm] / [PN 20-36 nm]
- [PN 10-36 nm]
- % PN (10-20 nm)
- % PN (20-36 nm)
- [PN >20 nm]
- [PN >10 nm]
- [BC]/[PN >10 nm]
- [PN >10 nm]/[PN background >10 nm]

Ultra UF (Variance Accounted 34%)

- [PN 10-20 nm] / [PN 20-36 nm]
- [PN 10-36 nm]
- % PN (10-20 nm)
- % PN (20-36 nm)
- [PN >20 nm]
- [PN >10 nm]
- [BC]/[PN >10 nm]
- [PN >10 nm]/[PN background >10 nm]
PCA Results
“Roadway” Feature

On Transect

On I-5

Winter – Spring Data
PCA

“Roadway” Feature

Wind from the SOUTH

Wind from the NORTH

Winter – Spring Data
PCA Results

“Ultra-UF” Feature

Transects

I-5

Winter – Spring Data
PCA

“Ultra-UF” Feature

Wind from the SOUTH

Wind from the NORTH

Winter – Spring Data
Fuel-Based Emission Factors (EF) # Particles/\(\text{kgC}_{\text{Fuel}}\)

Quantiles of PCA (Ultra-UF)
Quantiles of PCA (Roadway)

Winter – Spring Data
Fuel-Based Emission of UF particles
(Particles/kgC\textsubscript{Fuel})

Preliminary Fixed Site
Small Particles (~15.4 nm)

Maywood (S of airport)
Submitted NIH Proposal in Nov 2018 for Further Study

Develop a “Selective Ultrafine Particle Respirator” (SUPR)

Selectively filters out the smallest ultrafine particles so that we can use it in controlled experiments to measure short-term health effects.

We should find out about the status of this proposal by summer 2019.
Next Steps

- Repeat analyses on full data set
- Analyze fixed site data
- Estimate daily Emission Rates for roadways and airport
- Report by December 2019
QUESTIONS