The Long-Term Impact of Metal Smelting Operations on Arsenic Availability in Urban Lakes of the South-Central Puget Sound Region

Jim Gawel, Ph.D.
University of Washington: Tacoma
Environmental Science and Studies

Research Team
• UWT Undergraduates: Lindsay Tuttle, Sarah Burdick, Michelle Miller, Jessica Asplund, Shawna Peterson, Kara Ziegler and Alexandra Ehle
• Bellarmine High School: Amanda Tollefson and Brian Rurik
• UW Seattle Faculty: Becca Neumann

Importance of Urban Lakes
• Human population concentrated in urban areas; already 50% or greater worldwide
• Urban poor rely on local, inexpensive, recreational water resources
• Some rely on water sources for culture and diet augmentation
• Urban waters serve as critical habitat for multiple species

Urbanization & Arsenic Pollution
• Lake sediments act as As reservoirs after external source removal
• If remobilized periodically As may migrate to surface sediments
• Cultural eutrophication can exacerbate As release from sediments
• Other anthropogenic inputs may affect As mobility (e.g. road salt, nitrate and phosphate)

Major Sources of Arsenic in Lakes
• Herbicide applications in lakes
• Fruit orchard insecticides
 [Paris Green = 3Cu(AsO2)2.Cu(C2H3O2)2]
• Chemical manufacture
• Timber treatment (CCA)
• Mine tailings and drainage
• Stack emissions
• Slag disposal

ASARCO
• 1890 Lead smelting begins
• 1905 Conversion to copper smelter
• 1912 Arsenic recovery begins in Tacoma
• 1917 Tall stack constructed (700 ft asl) + Electrostatic precipitators
• 1970 Meteorological Curtailment Program
• 1986 All smelting operations cease
Ongoing Study Breakdown

- Spatial distribution of As and Pb in lake sediments
- Temporal distribution in sediments
- Arsenic mobility and release to water column
- Chemical, biological, and physical controls on As mobility, bioavailability, and toxicity

Lakes Sampled

- American Lake
- Spanaway Lake
- Steilacoom Lake
- Snake Lake
- Surprise Lake
- Fivemile Lake
- Lake Killarney
- Lake Geneva
- North Lake
- Steel Lake
- Lake Fenwick
- Angle Lake
- Bay Lake
- Crescent Lake
- Horseshoe Lake
- Wye Lake
- Wicks Lake
- Long Lake
- Lake Meridian
- Bonney Lake
- Lake Tapps
- Dolloff Lake
- Bow Lake
- Waughop Lake
- Wapato Lake

Wind Patterns

WA Dept. of Ecology. 2002. King County mainland soil study.
Lakes within predicted deposition zone significantly higher in As and Pb

As vs. Pb in Surface Sediments

- Crescent
- Killarney
- Fenwick
- Angle
- Lake Geneva
- Genesee
- Meridian
- Fivemile
- Long Bridge
- Spanaway
- Genesee
- Horseshoe
- Bay
- Angle
- Wicks
- Surprise
- Steel
- Snake
- Steilacoom
- Two
- Different Sources?

Two Different Sources?

- **R^2 = 0.8932**
- **R^2 = 0.6978**

As in Sediment Cores

- **As (mg/kg dry sediment)**
- **Depth in core (cm)**

- **As (mg/kg dry sediment)**
- **Depth in core (cm)**

Sediment Summary

- Surface sediments in 10 of 12 lakes in deposition zone exceed probable effects concentration of 33 ppm As and 128 ppm Pb
 - PEC = "above which negative effects are likely to be observed after a period of exposition"
- Lake Killarney and Angle Lake show highest sediment concentrations at sediment surface
- Ongoing inputs?
- Vertical migration?
Sediment/Water Transfer

- **Basic Red/Ox Chemistry**
 - Oxidized
 - \(\text{Fe}^{3+} \) (oxidized)
 - \(\text{AsO}_4^{3-} \) (arsenate)
 - \(\text{AsO}_3^{3-} \) (arsenite)
 - Reduced
 - \(\text{HS}^- \) (sulfide)
 - \(\text{AsO}_3^{3-} \) (arsenite)

- **Effect of Eh and pH on As/Fe/S**
 - Primary inorganic forms:
 - Arsenate (As(V))
 - Arsenite (As(III))
 - Ferric (Fe(III))
 - Ferrous (Fe(II))
 - Redox and pH influence speciation and mobility.

- **Arsenic Remobilization**
 - WARM: Thermocline barrier to mixing oxygen
 - COOL: Organic forms of As (CO_3, HCO_3, AsO_3^2-)

- **Lake Meridian, Angle Lake, North Lake, Lake Killarney**
 - Temperature and Dissolved Oxygen (DO) profiles
 - Average Total Arsenic Concentration (ppb)

- **Lake Meridian, Angle Lake, North Lake, Lake Killarney**
 - Temperature and Dissolved Oxygen (DO) profiles
 - Average Total Arsenic Concentration (ppb)
DO vs PO₄ in Select Lakes

Filtered vs. Unfiltered

Dissolved Arsenic Speciation

Proposed Model for As Mobility in Presence of Oxygen
Questions to Address in Research

- What is the mix of water quality parameters to measure to predict As mobility in urban lakes?
- Does the presence of high levels of dissolved As in surface waters increase biotic uptake by phytoplankton, zooplankton, and fish?
- Would fish bioaccumulation become an issue under these conditions?
- How might this be important to freshwater sediment criteria development?

Bioindicators of Metal Toxicity

Acknowledgements

- Funded by:
 - UWT Environmental Sciences Program
 - UWT Founders Endowment
 - UWT Chancellor’s Fund for Research
- As speciation provided by Applied Speciation, Inc., Tukwila, WA, at major discount

To All My UW Tacoma and Bellarmine Researchers!
Links page

- Dr. Jim Gawel (jimgawel@uw.edu)

- Environmental Sciences and Studies at University of Washington Tacoma:
 http://www.tacoma.uw.edu/interdisciplinary-arts-sciences/courses/environmental-studies

- University of Washington Superfund Research Program:

- US EPA Region 10:
 http://www.epa.gov/aboutepa/region10.html

- Dr. Bruce Duncan, Regional Science Liaison, US EPA Region 10
 mailto:duncan.bruce@epa.gov

- Superfund Research Program - National Institute of Environmental Health Sciences (NIEHS)