James S. Woods, PhD, MPH, MS

Research Professor Emeritus, Env. and Occ. Health Sciences (Primary department)
Our general area of research focuses on the gene-environment interactions that explain susceptibility of humans to toxicity from heavy metal exposures. Heavy metals such as mercury and lead are important public health hazards, because they accumulate in the brain and other organs, causing cognitive deficits, personality changes, and impaired motor function. Students in our laboratory use molecular biological and biochemical techniques to define the mechanisms by which metals cause toxicity to cells and tissues at the molecular level. Genomics and bioinformatics studies are also aimed at identifying polymorphisms in specific genes that explain why some individuals or subgroups, such as children or the elderly, are more susceptible to the toxic effects of metals than others.

Contact Information

University of Washington
Box: 354695
4225 Roosevelt Way NE
Seattle, WA 98195-
Tel: 206-685-3443

Research Interests

  • Molecular toxicology of trace metals, metal effects on heme and porphyrin metabolism, biological markers of metal exposure, gene-metal interactions
  • KEYWORDS: Biomarkers, Genetic susceptibility, Mercury toxicity, Porphyrins, Children, Biomarkers, Genetic susceptibility to toxins, Heavy metals analysis in soil, Lead paint, Mercury, Occupational exposure, Pentachlorophenol, Pesticides, Toxicology,Welding & metal trades & hazards

Teaching interests

Toxicology of metals, Drugs and chemicals affecting kidney function


PhD, Pharmacology, University of Washington, 1970
MPH, Epidemiology, University of North Carolina, 1978
MS, Pharmacology, University of Washington, 1968


Molecular Mechanisms of Metal Toxicity
Students in our laboratory use animal models and cultured cells from kidney, brain or other tissues to define signaling pathways involved in metal toxicity. Particular interest focuses on cellular mechanisms by which metals cause cell injury by promoting oxidative stress, causing inflammation, or by increasing the susceptibility of cells to apoptosis, an underlying event in chronic degenerative diseases. Cell culture techniques, gene expression assays, autoradiography, and microarray-based assays are principal techniques used in these studies.
Biomarkers of Metal Exposures
Biomarkers are metabolites in the blood or urine that are altered by toxicant exposure. Toxic metals such as mercury, arsenic and lead alter the concentrations of metabolites called porphyrins in the urine. Changes in the urinary porphyrin excretion pattern can be used as specific biomarkers of exposure and ensuing toxicity to these metals. Students in our laboratory participate in studies to validate porphyrin excretion patterns as a predictive biomarker of mercury-related neurotoxicity in both adult and children human populations with mercury exposure from different sources. Students involved in these studies utilize column chromatography, atomic absorption spectrofluormetry and HPLC techniques for metal and porphyrin analyses.
Genotoxicity of Metal-related Disorders
A major research focus for students in our laboratory is identifying genetic polymorphisms that underlie increased susceptibility to metal toxicity. Particular interest focuses on mercury-related neurological and behavioral disorders in children and the elderly, including autism, ADHD and age-related dementia. Students participating in these studies identify candidate genes that are likely to be involved in these disorders, perform DNA genotyping assays using real time PCR or SNP-chip techniques to evaluate gene polymorphisms and gene frequencies, and employ biostatistical and bioinformatics procedures to determine if specific polymorphisms underlie increased sensitivity to mercury or other metal(s) in behavioral, cognitive or motor function deficits associated with these disorders.
Review date: